基于DCT变换和huffman编码的语音压缩算法matlab仿真

简介: 基于DCT变换和huffman编码的语音压缩算法matlab仿真

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg
4.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
语音是人类最重要、最有效、最常用和最方便的交换信息的形式,是人们思想疏通和情感交流的最主要途径。在实际的语音通信中,有些信道难以扩宽且质量很差;有些信道正被广泛使用,短期内难以更新;有些昂贵的信道,每压缩一个比特都意味着节省开支。因此,语音压缩编码无疑在语音通信及人类信息交流中占有举足轻重的地位。

   随着通信技术的快速发展,语音压缩编码技术得到了快速发展和广泛应用,尤其是最近20年,语音压缩编码技术在移动通信、卫星通信、多媒体技术以及IP电话通信中得到普遍应用,起着举足轻重的作用。语音编码就是将采集得到的数字语音信号作为数字信号传输、存储或处理,然后对数字语音信号进行压缩编码从而减小存储空间。

   本系统主要包括以下几个模块:多通道滤波器,DCT变换与反变换,量化与逆量化,哈夫曼编码译码,系统的结构框图如下所示:

66a7a0ee9d93df709258e7d10fa89094_82780907_202309222347320691280684_Expires=1695398252&Signature=FdjBXZAdboKDQFz28wBFucO%2FxVs%3D&domain=8.png

4.1 多通道滤波
多通道滤波器被用来对多个输入数据流进行滤波,在通信、多媒体等领域被广泛使用。多通道的主要优势在于可以在输入数据流(通道)采样率较低的情况下,使用速度很快的运算单元。其基本结构如下所示:

9c5506bd475e82610febf147143efafd_82780907_202309222349210207370573_Expires=1695398361&Signature=URuAjUIMvc%2B08ycATxLSQkbBrfw%3D&domain=8.png

6dfae8ba668f0ef15ad707bec716c716_82780907_202309222349210160933526_Expires=1695398361&Signature=meNJcRzbpBI7mzvRtCax1LIV5VQ%3D&domain=8.png

4.3 哈夫曼编码
huffman编码经常应用于数据压缩。 在计算机信息处理中,“哈夫曼编码”是一种一致性编码法,用于数据的无损耗压缩。这一术语是指使用一张特殊的编码表将源字符进行编码。这张编码表的特殊之处在于,它是根据每一个源字符出现的估算概率而建立起来的。

    本系统发送端最后的编码模块,需要将量化后的数据进行压缩,得到二进制比特率进行发送,这里我们使用huffman编码。Huffman编码的基本原理如下所示:哈夫曼编码是用于数据文件压缩的一个十分有效的编码方法,压缩率通常在20%~90%之间。哈夫曼编码算法使用字符在文件中出现的频率表来建立一个0,1串,以表示各个字符的最优表示方式。

4.部分核心程序

```%% step2:编码
%step2.1:filter bank
%子通道数目,这里暂时设置为4,因为整个系统运行比较缓慢,设置为多通道后,仿真时间
%为原来的N倍,所以这里暂时取N=2,即2通道滤波器组。
N = 127;
nbands = 32;
data_filter = func_32_filter(N,nbands,x,select);
%step2.2:DCT
data_DCT = func_dct(data_filter,select);
figure;
plot(data_DCT(1,:),'r');grid on;title('其中一个通道的DCT变化后的效果仿真');
%step2.3:量化
data_quantization = func_q(data_DCT,select);
%step2.4:huffman 编码
[data_Huffman1 ,data_Huffman2 ,data_Huffman3 ,data_Huffman4,...
data_Huffman5 ,data_Huffman6 ,data_Huffman7 ,data_Huffman8,...
data_Huffman9 ,data_Huffman10,data_Huffman11,data_Huffman12,...
data_Huffman13,data_Huffman14,data_Huffman15,data_Huffman16,...
data_Huffman17,data_Huffman18,data_Huffman19,data_Huffman20,...
data_Huffman21,data_Huffman22,data_Huffman23,data_Huffman24,...
data_Huffman25,data_Huffman26,data_Huffman27,data_Huffman28,...
data_Huffman29,data_Huffman30,data_Huffman31,data_Huffman32] = func_huffman2(data_quantization,select);

save y.mat data_Huffman1

%% step3:解码
%step3.1 huffman解码
data_unhuffman = func_invhuffman2(data_Huffman1 ,data_Huffman2 ,data_Huffman3 ,data_Huffman4,...
data_Huffman5 ,data_Huffman6 ,data_Huffman7 ,data_Huffman8,...
data_Huffman9 ,data_Huffman10,data_Huffman11,data_Huffman12,...
data_Huffman13,data_Huffman14,data_Huffman15,data_Huffman16,...
data_Huffman17,data_Huffman18,data_Huffman19,data_Huffman20,...
data_Huffman21,data_Huffman22,data_Huffman23,data_Huffman24,...
data_Huffman25,data_Huffman26,data_Huffman27,data_Huffman28,...
data_Huffman29,data_Huffman30,data_Huffman31,data_Huffman32,...
select);

%step3.2 反量化
data_inquantization = func_unq(data_unhuffman,select);

%step3.3 反DCT
data_IDCT = func_IDCT(data_inquantization,select);
figure;
plot(data_IDCT(:,1),'r');hold on; grid on;title('其中一个通道IDCT后的效果');

%step3.4 反滤波器
reconstruct_sound = func_inv32_filter(data_IDCT',select);
figure;
plot(reconstruct_sound,'r');
title('重构后的音乐');
grid on;
%% step4:解码之后播放
sound(reconstruct_sound,Fs);
toc


```

相关文章
|
4天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
5天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
3天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
2天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
17天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
152 80
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
10天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
13天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
9天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
14天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。