自然语言入门:NLP数据读取与数据分析

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 本章主要内容为数据读取和数据分析,具体使用`Pandas`库完成数据读取操作,并对赛题数据进行分析构成。

自然语言入门:NLP数据读取与数据分析


1.NLP数据读取与数据分析

数据读取

赛题数据虽然是文本数据,每个新闻是不定长的,但任然使用csv格式进行存储。因此可以直接用Pandas完成数据读取的操作。

下载数据集

!wget https://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531810/train_set.csv.zip!unzip train_set.csv.zip

下载数据集

!wget https://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531810/test_a.csv.zip!unzip test_a.csv.zip
import pandas as pd
train_df = pd.read_csv('./train_set.csv', sep='\t', nrows=100)

这里的`read_csv`由三部分构成:

- 读取的文件路径,这里需要根据改成你本地的路径,可以使用相对路径或绝对路径;

- 分隔符`sep`,为每列分割的字符,设置为`\t`即可;

- 读取行数`nrows`,为此次读取文件的函数,是数值类型(由于数据集比较大,建议先设置为100);

train_df.head()

上图是读取好的数据,是表格的形式。第一列为新闻的类别,第二列为新闻的字符。

数据分析

在读取完成数据集后,我们还可以对数据集进行数据分析的操作。虽然对于非结构数据并不需要做很多的数据分析,但通过数据分析还是可以找出一些规律的。

此步骤我们读取了所有的训练集数据,在此我们通过数据分析希望得出以下结论:

赛题数据中,新闻文本的长度是多少?

赛题数据的类别分布是怎么样的,哪些类别比较多?

赛题数据中,字符分布是怎么样的?

句子长度分析

在赛题数据中每行句子的字符使用空格进行隔开,所以可以直接统计单词的个数来得到每个句子的长度。统计并如下:

%pylab inline train_df['text_len'] = train_df['text'].apply(lambda x: len(x.split(' '))) print(train_df['text_len'].describe())

对新闻句子的统计可以得出,本次赛题给定的文本比较长,每个句子平均由907个字符构成,最短的句子长度为2,最长的句子长度为57921。

下图将句子长度绘制了直方图,可见大部分句子的长度都几种在2000以内。

_ = plt.hist(train_df['text_len'], bins=200) plt.xlabel('Text char count') plt.title("Histogram of char count")

新闻类别分布

接下来可以对数据集的类别进行分布统计,具体统计每类新闻的样本个数。

train_df['label'].value_counts().plot(kind='bar') plt.title('News class count') plt.xlabel("category")

在数据集中标签的对应的关系如下:{'科技': 0, '股票': 1, '体育': 2, '娱乐': 3, '时政': 4, '社会': 5, '教育': 6, '财经': 7, '家居': 8, '游戏': 9, '房产': 10, '时尚': 11, '彩票': 12, '星座': 13}

从统计结果可以看出,赛题的数据集类别分布存在较为不均匀的情况。在训练集中科技类新闻最多,其次是股票类新闻,最少的新闻是星座新闻。

字符分布统计

接下来可以统计每个字符出现的次数,首先可以将训练集中所有的句子进行拼接进而划分为字符,并统计每个字符的个数。

从统计结果中可以看出,在训练集中总共包括6869个字,其中编号3750的字出现的次数最多,编号3133的字出现的次数最少。

from collections import Counter all_lines = ' '.join(list(train_df['text'])) word_count = Counter(all_lines.split(" ")) word_count = sorted(word_count.items(), key=lambda d:d[1], reverse = True)

print(len(word_count))

print(word_count[0])

print(word_count[-1])

这里还可以根据字在每个句子的出现情况,反推出标点符号。下面代码统计了不同字符在句子中出现的次数,其中字符3750,字符900和字符648在20w新闻的覆盖率接近99%,很有可能是标点符号。

from collections import Counter train_df['text_unique'] = train_df['text'].apply(lambda x: ' '.join(list(set(x.split(' '))))) all_lines = ' '.join(list(train_df['text_unique'])) word_count = Counter(all_lines.split(" ")) word_count = sorted(word_count.items(), key=lambda d:int(d[1]), reverse = True)

print(word_count[0])

print(word_count[1])

print(word_count[2])

数据分析的结论

通过上述分析我们可以得出以下结论:

赛题中每个新闻包含的字符个数平均为1000个,还有一些新闻字符较长;

赛题中新闻类别分布不均匀,科技类新闻样本量接近4w,星座类新闻样本量不到1k;

赛题总共包括7000-8000个字符;

通过数据分析,我们还可以得出以下结论:

每个新闻平均字符个数较多,可能需要截断;

由于类别不均衡,会严重影响模型的精度;

本章小结

本章对赛题数据进行读取,并新闻句子长度、类别和字符进行了可视化分析。

本章作业

假设字符3750,字符900和字符648是句子的标点符号,请分析赛题每篇新闻平均由多少个句子构成?

统计每类新闻中出现次数对多的字符


实验链接:https://developer.aliyun.com/adc/scenario/81d446f7ccea4eb685f67c9c2a5eff16

相关文章
|
19天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
29天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
48 3
|
2月前
|
机器学习/深度学习 存储 人工智能
大数据中自然语言处理 (NLP)
【10月更文挑战第19天】
164 60
|
3天前
|
数据采集 监控 数据挖掘
常用电商商品数据API接口(item get)概述,数据分析以及上货
电商商品数据API接口(item get)是电商平台上用于提供商品详细信息的接口。这些接口允许开发者或系统以编程方式获取商品的详细信息,包括但不限于商品的标题、价格、库存、图片、销量、规格参数、用户评价等。这些信息对于电商业务来说至关重要,是商品数据分析、价格监控、上货策略制定等工作的基础。
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理(Natural Language Processing,简称NLP)
自然语言处理(NLP)是人工智能的分支,旨在让计算机理解、解释和生成人类语言。NLP的关键技术和应用包括语言模型、词嵌入、文本分类、命名实体识别、机器翻译、文本摘要、问答系统、情感分析、对话系统、文本生成和知识图谱等。随着深度学习的发展,NLP的应用日益广泛且效果不断提升。
|
1月前
|
存储 机器学习/深度学习 数据可视化
数据集中存在大量的重复值,会对后续的数据分析和处理产生什么影响?
数据集中存在大量重复值可能会对后续的数据分析和处理产生多方面的负面影响
57 10
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理(NLP)是AI的重要分支,旨在让计算机理解人类语言
自然语言处理(NLP)是AI的重要分支,旨在让计算机理解人类语言。本文探讨了深度学习在NLP中的应用,包括其基本任务、优势、常见模型及具体案例,如文本分类、情感分析等,并讨论了Python的相关工具和库,以及面临的挑战和未来趋势。
51 1
|
1月前
|
人工智能 自然语言处理 语音技术
利用Python进行自然语言处理(NLP)
利用Python进行自然语言处理(NLP)
43 1
|
2月前
|
人工智能 自然语言处理 语音技术
利用Python进行自然语言处理(NLP)
利用Python进行自然语言处理(NLP)
32 3
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
深入浅出:用Python进行数据分析的入门指南
【10月更文挑战第21天】 在信息爆炸的时代,掌握数据分析技能就像拥有一把钥匙,能够解锁隐藏在庞大数据集背后的秘密。本文将引导你通过Python语言,学习如何从零开始进行数据分析。我们将一起探索数据的收集、处理、分析和可视化等步骤,并最终学会如何利用数据讲故事。无论你是编程新手还是希望提升数据分析能力的专业人士,这篇文章都将为你提供一条清晰的学习路径。

热门文章

最新文章

相关产品

  • 自然语言处理