自然语言入门:NLP数据读取与数据分析
1.NLP数据读取与数据分析
数据读取
赛题数据虽然是文本数据,每个新闻是不定长的,但任然使用csv格式进行存储。因此可以直接用Pandas完成数据读取的操作。
下载数据集
!wget https://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531810/train_set.csv.zip!unzip train_set.csv.zip
下载数据集
!wget https://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531810/test_a.csv.zip!unzip test_a.csv.zip
import pandas as pd train_df = pd.read_csv('./train_set.csv', sep='\t', nrows=100)
这里的`read_csv`由三部分构成:
- 读取的文件路径,这里需要根据改成你本地的路径,可以使用相对路径或绝对路径;
- 分隔符`sep`,为每列分割的字符,设置为`\t`即可;
- 读取行数`nrows`,为此次读取文件的函数,是数值类型(由于数据集比较大,建议先设置为100);
train_df.head()
上图是读取好的数据,是表格的形式。第一列为新闻的类别,第二列为新闻的字符。
数据分析
在读取完成数据集后,我们还可以对数据集进行数据分析的操作。虽然对于非结构数据并不需要做很多的数据分析,但通过数据分析还是可以找出一些规律的。
此步骤我们读取了所有的训练集数据,在此我们通过数据分析希望得出以下结论:
赛题数据中,新闻文本的长度是多少?
赛题数据的类别分布是怎么样的,哪些类别比较多?
赛题数据中,字符分布是怎么样的?
句子长度分析
在赛题数据中每行句子的字符使用空格进行隔开,所以可以直接统计单词的个数来得到每个句子的长度。统计并如下:
%pylab inline train_df['text_len'] = train_df['text'].apply(lambda x: len(x.split(' '))) print(train_df['text_len'].describe())
对新闻句子的统计可以得出,本次赛题给定的文本比较长,每个句子平均由907个字符构成,最短的句子长度为2,最长的句子长度为57921。
下图将句子长度绘制了直方图,可见大部分句子的长度都几种在2000以内。
_ = plt.hist(train_df['text_len'], bins=200) plt.xlabel('Text char count') plt.title("Histogram of char count")
新闻类别分布
接下来可以对数据集的类别进行分布统计,具体统计每类新闻的样本个数。
train_df['label'].value_counts().plot(kind='bar') plt.title('News class count') plt.xlabel("category")
在数据集中标签的对应的关系如下:{'科技': 0, '股票': 1, '体育': 2, '娱乐': 3, '时政': 4, '社会': 5, '教育': 6, '财经': 7, '家居': 8, '游戏': 9, '房产': 10, '时尚': 11, '彩票': 12, '星座': 13}
从统计结果可以看出,赛题的数据集类别分布存在较为不均匀的情况。在训练集中科技类新闻最多,其次是股票类新闻,最少的新闻是星座新闻。
字符分布统计
接下来可以统计每个字符出现的次数,首先可以将训练集中所有的句子进行拼接进而划分为字符,并统计每个字符的个数。
从统计结果中可以看出,在训练集中总共包括6869个字,其中编号3750的字出现的次数最多,编号3133的字出现的次数最少。
from collections import Counter all_lines = ' '.join(list(train_df['text'])) word_count = Counter(all_lines.split(" ")) word_count = sorted(word_count.items(), key=lambda d:d[1], reverse = True)
print(len(word_count))
print(word_count[0])
print(word_count[-1])
这里还可以根据字在每个句子的出现情况,反推出标点符号。下面代码统计了不同字符在句子中出现的次数,其中字符3750,字符900和字符648在20w新闻的覆盖率接近99%,很有可能是标点符号。
from collections import Counter train_df['text_unique'] = train_df['text'].apply(lambda x: ' '.join(list(set(x.split(' '))))) all_lines = ' '.join(list(train_df['text_unique'])) word_count = Counter(all_lines.split(" ")) word_count = sorted(word_count.items(), key=lambda d:int(d[1]), reverse = True)
print(word_count[0])
print(word_count[1])
print(word_count[2])
数据分析的结论
通过上述分析我们可以得出以下结论:
赛题中每个新闻包含的字符个数平均为1000个,还有一些新闻字符较长;
赛题中新闻类别分布不均匀,科技类新闻样本量接近4w,星座类新闻样本量不到1k;
赛题总共包括7000-8000个字符;
通过数据分析,我们还可以得出以下结论:
每个新闻平均字符个数较多,可能需要截断;
由于类别不均衡,会严重影响模型的精度;
本章小结
本章对赛题数据进行读取,并新闻句子长度、类别和字符进行了可视化分析。
本章作业
假设字符3750,字符900和字符648是句子的标点符号,请分析赛题每篇新闻平均由多少个句子构成?
统计每类新闻中出现次数对多的字符
实验链接:https://developer.aliyun.com/adc/scenario/81d446f7ccea4eb685f67c9c2a5eff16