m基于uw导频序列和cordic算法的基带数据帧频偏估计和补偿FPGA实现,包含testbench

简介: m基于uw导频序列和cordic算法的基带数据帧频偏估计和补偿FPGA实现,包含testbench

1.算法仿真效果
本系统进行了Vivado2019.2平台的开发,测试结果如下:

276cc8a0878f9fbd755d061dc3b0acd6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
8a8968e0a71c675f7afcd1db61e779fd_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

   我们可以看到,带有频偏的基带信号o_I_fre和o_Q_fre得到了有效的频偏补偿,其补偿后的数据o_Ir和o_Qr和原始的基带数据基本一致。

2.算法涉及理论知识概要
基带数据帧频偏估计和补偿是一种用于纠正数字通信系统中频率偏差的技术。在数字通信系统中,发送端将信号进行调制后发送到信道中,接收端接收到信号后需要进行解调,以便恢复出原始信号。然而,由于发送端和接收端的频率偏差,可能会导致解调后的信号出现误差。因此,需要进行频偏估计和补偿,以减小这种误差。

   基于uw导频序列和CORDIC算法的基带数据帧频偏估计和补偿是一种常用的技术。下面我们将详细介绍其原理、数学公式和实现方法。

    基于uw导频序列的频偏估计和补偿技术是一种利用导频序列来估计和校正频率偏差的方法。在数字通信系统中,通常会在信号中插入一些导频序列,以便接收端能够利用这些导频序列估计出系统的频率偏差。

   具体来说,uw导频序列是一种常用的导频序列,其形式为

u(w)=N1​​∑n=0N−1​u(n)exp(−jN2πn​w)

   其中u(n)为原始信号,N为序列长度。这种导频序列具有良好的自相关性和互相关性,能够有效地估计出系统的频率偏差。

    CORDIC算法是一种高效的计算反正切和平方根的算法,其基本思想是通过一系列简单的移位和加减运算来逼近反正切和平方根的计算。在基带数据帧频偏估计和补偿中,可以利用CORDIC算法来计算uw导频序列的自相关性和互相关性,从而估计出系统的频率偏差。

   基于uw导频序列和CORDIC算法的基带数据帧频偏估计和补偿的数学公式如下:

8a8968e0a71c675f7afcd1db61e779fd_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

基于uw导频序列和CORDIC算法的基带数据帧频偏估计和补偿的实现方法如下:

生成uw导频序列。根据uw导频序列的公式生成长度为N的uw导频序列。
接收基带数据帧。从接收端接收基带数据帧,并将其与uw导频序列进行互相关运算。同时,将接收到的基带数据帧与uw导频序列进行自相关运算。
利用CORDIC算法计算自相关性和互相关性的相位差。将自相关性和互相关性的结果输入到CORDIC算法中,计算出自相关性和互相关性的相位差。
计算频率偏差。根据自相关性和互相关性的相位差计算出系统的频率偏差。
计算补偿因子。利用CORDIC算法计算出补偿因子。
对接收到的基带数据进行补偿。将接收到的基带数据与补偿因子相乘,得到补偿后的基带数据。
将补偿后的基带数据进行解调,恢复出原始信号。
3.Verilog核心程序
````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2023/07/24 21:34:11
// Design Name:
// Module Name: PN_1_sycn
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module UW_1_sycn(
i_clk,
i_rst,
o_I_base,
o_Q_base,
o_I_fre,
o_Q_fre,
o_pkI,
o_pkQ,
o_Md,
o_phase,
o_Ir,
o_Qr
);

input i_clk;
input i_rst;
output signed[11:0]o_I_base;
output signed[11:0]o_Q_base;
output signed[23:0]o_I_fre ;
output signed[23:0]o_Q_fre ;
output signed[31:0]o_pkI;
output signed[31:0]o_pkQ;
output signed[31:0]o_Md;
output signed[31:0]o_phase;
output signed[23:0]o_Ir;
output signed[23:0]o_Qr;

//发射
Transmitter uu1(
.i_clk (i_clk),
.i_rst (i_rst),
.o_I_base (o_I_base),
.o_Q_base (o_Q_base),
.o_I_fre (o_I_fre),
.o_Q_fre (o_Q_fre)
);

//通过帧延迟做共轭相乘,计算频偏
Receiver uu2(
.i_clk (i_clk),
.i_rst (i_rst),
.i_I_base (o_I_fre[17:6]),
.i_Q_base (o_Q_fre[17:6]),
.o_Md (o_Md),
.o_pkI (o_pkI),
.o_pkQ (o_pkQ),
.o_phase (o_phase),
.o_Ir (o_Ir),
.o_Qr (o_Qr)
);

endmodule
```

相关文章
|
14天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
113 69
|
18天前
|
移动开发 算法 数据安全/隐私保护
基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。
53 26
|
24天前
|
算法 异构计算
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
46 8
|
1月前
|
算法 物联网 异构计算
基于FPGA的4FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4FSK调制解调系统的Verilog实现,包括高斯信道模块和误码率统计模块,支持不同SNR设置。系统在Vivado 2019.2上开发,展示了在不同SNR条件下的仿真结果。4FSK调制通过将输入数据转换为四个不同频率的信号来提高频带利用率和抗干扰能力,适用于无线通信和数据传输领域。文中还提供了核心Verilog代码,详细描述了调制、加噪声、解调及误码率计算的过程。
51 11
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
45 1
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的64QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的64QAM调制解调通信系统的设计与实现,包括信号生成、调制、解调和误码率测试。系统在Vivado 2019.2中进行了仿真,通过设置不同SNR值(15、20、25)验证了系统的性能,并展示了相应的星座图。核心程序使用Verilog语言编写,加入了信道噪声模块和误码率统计功能,提升了仿真效率。
55 4
|
2月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
7月前
|
编解码 算法 异构计算
基于FPGA的NC图像质量评估verilog实现,包含testbench和MATLAB辅助验证程序
在Vivado 2019.2和Matlab 2022a中测试的图像质量评估算法展示了效果。该算法基于NC指标,衡量图像与原始图像的相似度,关注分辨率、色彩深度和失真。提供的Verilog代码段用于读取并比较两个BMP文件,计算NC值。
|
2月前
|
存储 算法 数据处理
基于FPGA的8PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统在原有的8PSK调制解调基础上,新增了高斯信道与误码率统计模块,验证了不同SNR条件下的8PSK性能。VIVADO2019.2仿真结果显示,在SNR分别为30dB、15dB和10dB时,系统表现出不同的误码率和星座图分布。8PSK作为一种高效的相位调制技术,广泛应用于无线通信中。FPGA凭借其高度灵活性和并行处理能力,成为实现此类复杂算法的理想平台。系统RTL结构展示了各模块间的连接与协同工作。
63 16
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现16QAM调制解调通信系统,使用Verilog语言编写,包括信道模块、误码率统计模块。通过设置不同SNR值(如8dB、12dB、16dB),仿真测试系统的误码性能。项目提供了完整的RTL结构图及操作视频,便于理解和操作。核心程序实现了信号的生成、调制、信道传输、解调及误码统计等功能。
55 3

热门文章

最新文章