基于Mask-RCNN深度学习网络的人员检测算法matlab仿真

简介: 基于Mask-RCNN深度学习网络的人员检测算法matlab仿真

1.算法理论概述
基于Mask-RCNN深度学习网络的人员检测算法是一种用于检测图像中人员目标的方法。该算法结合了目标检测和实例分割的能力,能够准确地定位人员目标并生成像素级的掩膜。Mask-RCNN是一种基于深度学习的目标检测算法,它是在Faster-RCNN的基础上进行扩展的。Mask-RCNN通过添加一个Mask Head网络来预测每个候选框的语义分割掩码,从而实现目标的精确分割和识别。Mask-RCNN网络主要包含两个部分:Region Proposal Network(RPN)和Mask Head。RPN用于生成候选框,Mask Head用于预测每个候选框的语义分割掩码。RPN首先对输入图像进行卷积和池化操作,然后生成一组候选框,这些候选框被用于后续的目标检测和分割。Mask Head网络接受RPN生成的候选框作为输入,然后对每个候选框进行语义分割掩码的预测,最终输出每个物体的类别和掩码。

  MASK-RCNN的基本结构如下图所示:

c6888e41f2d0613303425f0e1b24a8a3_82780907_202309102140120347478882_Expires=1694353812&Signature=eXhBiJUzgl798GVC9Wea32JlVRg%3D&domain=8.png

MASK-RCNN的实现步骤如下:

1.数据准备 首先,需要准备训练数据集,包括带有标注框和掩膜的人员图像。同时,还需要定义类别标签,例如"person"和"background"。

2.网络架构 Mask-RCNN是一种基于卷积神经网络(CNN)的深度学习模型。它由两个子网络组成:区域建议网络(RPN)和掩膜子网络。RPN用于生成候选目标框,而掩膜子网络用于生成目标的像素级掩膜。这两个子网络共享特征提取层,以提高计算效率。

58f16aa70c56935e7ab10d23f8c160e8_82780907_202309102140220661880025_Expires=1694353822&Signature=hgyivreQLayTSxwbbdvhCJ%2F94PQ%3D&domain=8.png

8.网络训练 使用训练数据集对Mask-RCNN网络进行训练。通过反向传播和梯度下降算法,优化网络参数,以最小化损失函数。训练过程中可以使用数据增强技术来增加数据样本的多样性。

9.目标检测与分割 在测试阶段,将训练好的网络应用于新的图像。通过前向传播,对图像进行目标检测和实例分割操作。根据模型输出的框和掩膜信息,可以准确地定位人员目标并生成像素级的掩膜。ask Head的掩码预测:
$$\hat{m}{h,w} = \frac{1}{Z}\sum{(u,v)\in R} f_{u,v}(h,w)$$
其中,$Z$是一个归一化因子,$R$是候选框的区域,$f_{u,v}$表示特征图上(u,v)位置的特征向量。

    实现Mask-RCNN算法的难点在于网络架构的设计和训练过程的调优。网络的设计需要合理选择卷积和全连接层的结构,并考虑不同尺度目标的检测能力。训练过程需要选择合适的优化算法和学习率调度策略,并进行适当的数据增强和正则化,以提高网络的泛化能力和鲁棒性。此外,合适的损失函数选择和权衡目标检测与实例分割任务的重要性也是一个挑战。

2.算法运行软件版本
matlab2022a

3.算法运行效果图预览

3.png
4.png
5.png
6.png
7.png
8.png
9.png

4.部分核心程序

```for i = 1:20
img = imread(file_list(i).name);% 读取图像
imgSize = size(img);% 获取图像尺寸
[~, maxDim] = max(imgSize); % 获取最大尺寸维度
resizeSize = [NaN NaN]; % 调整后的尺寸
resizeSize(maxDim) = targetSize(maxDim);% 按目标尺寸调整尺寸

img          = imresize(img, resizeSize);% 调整图像尺寸
% 进行 Mask RCNN 检测
[boxes, scores, labels, masks] = detectMaskRCNN(net, maskSubnet, img, params, SimuEnv);


if(isempty(masks))
    overlayedImage = img;% 如果未检测到掩膜,使用原始图像
    NAME='未检测到人员'% 名称为未检测到人员
else
    overlayedImage = insertObjectMask(img, masks);% 将掩膜绘制在图像上
    NAME='检测到人员'% 名称为检测到人员
end
figure
imshow(overlayedImage) % 显示处理后的图像
showShape("rectangle", gather(boxes), "Label", labels, "LineColor",'g')% 显示边界框和标签
title(NAME);% 设置标题

end

```

相关文章
|
6天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
58 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
19天前
|
机器学习/深度学习 人工智能 网络架构
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
37 1
|
21天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
|
24天前
|
安全 Linux 网络安全
nmap 是一款强大的开源网络扫描工具,能检测目标的开放端口、服务类型和操作系统等信息
nmap 是一款强大的开源网络扫描工具,能检测目标的开放端口、服务类型和操作系统等信息。本文分三部分介绍 nmap:基本原理、使用方法及技巧、实际应用及案例分析。通过学习 nmap,您可以更好地了解网络拓扑和安全状况,提升网络安全管理和渗透测试能力。
94 5
|
24天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
72 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
24天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
68 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
211 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码