算法训练Day42|1049. 最后一块石头的重量 II ● 494. 目标和 ● 474.一和零

简介: 算法训练Day42|1049. 最后一块石头的重量 II ● 494. 目标和 ● 474.一和零

背包类别

01背包:有n种物品,每种物品只有一个.

完全背包:有n种物品,每种物品有无限个.

多重背包:有n种物品,每种物品个数各不相同.

区别:仅仅体现在物品个数上的不同而已。


确定dp[i][j]数组的含义:[0,i]的物品任取放容量为j的背包里.


LeetCode:1049. 最后一块石头的重量 II

1049. 最后一块石头的重量 II - 力扣(LeetCode)


1.思路

01背包问题,dp[n + 1]初始化大小之所以是 n + 1 ,在于 n 是一个最大容量,且数组下标从 0 开始。

遍历顺序:先遍历物品再遍历背包,后者背包倒序是为了将物品大值先放入背包,保证每个物品只能遍历一次。

递推公式:取决于物品大小和背包容量,如果背包容量 > 物品大小,则允许放入(此时背包状态:dp[j - stones[i]] + stones[i]),否则不允许放入(此时背包状态:dp[j]),选择两者之中的较大值即可。


2.代码实现

 1// 一维似乎更好理解
 2class Solution {
 3    public int lastStoneWeightII(int[] stones) {
 4        int sum = 0;
 5        for (int num : stones) {
 6            sum += num;
 7        }
 8        int target = sum / 2;
 9        int[] dp = new int[target + 1];
10        for (int i = 0; i < stones.length; i++) {
11            for (int j = target; j >= stones[i]; j--) {
12                dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);
13            }
14        }
15        return sum - 2 * dp[target];
16    } 
17}

3.复杂度分析

时间复杂度:O(n^2).

空间复杂度:O(n).


LeetCode: 494. 目标和

494. 目标和 - 力扣(LeetCode)


1.思路

本题可以抽象成01背包问题,中间需要计算一下…

遍历顺序依旧是:先物品再背包,保证物品先放入最大值及元素的唯一性.

分两种情况:sum<0时,取绝对值之后进入遍历.


2.代码实现

 1class Solution {
 2    public int findTargetSumWays(int[] nums, int target) {
 3        int sum = 0;
 4        for (int num : nums) {
 5            sum += num;
 6        }
 7        if (target < 0 && sum < -target) return 0;
 8        if ((target + sum) % 2 != 0) return 0;
 9        int size = (target + sum) / 2;
10        if (size < 0) size = -size;
11
12        int[] dp = new int[size + 1];
13        dp[0] = 1;
14        for (int i = 0; i < nums.length; i++) {
15            for (int j = size; j >= nums[i]; j--) {
16                dp[j] += dp[j - nums[i]];
17            }
18        }
19        return dp[size];
20    }
21}

3.复杂度分析

时间复杂度:O(n^2).

空间复杂度:O(n).


LeetCode: 474.一和零  

474. 一和零 - 力扣(LeetCode)


1.思路

拆解将m和n共同看作背包的整体,字符串中每个元素看成物品。沿用上述遍历顺序和dp[][]数组定义,输出即可.


2.代码实现

 1class Solution {
 2    public int findMaxForm(String[] strs, int m, int n) {
 3        // dp[i][j] 表示i个0 和 j个1时的最大子集数
 4        int[][] dp = new int[m + 1][n + 1];
 5        int one;
 6        int zero;
 7        // 先遍历物品
 8        for (String str : strs) {
 9            one = 0;
10            zero = 0;
11            // 得出每个字符串元素中包含的0和1的个数
12            for (char ch : str.toCharArray()) {
13                if (ch == '0') {
14                    zero++;
15                } else {
16                    one++;
17                }
18            }
19            // 倒序遍历背包,保证每个字符串元素只会被用一次
20            for (int i = m; i >= zero; i--) {
21                for (int j = n; j >= one; j--) {
22                    dp[i][j] = Math.max(dp[i][j], dp[i - zero][j - one] + 1);
23                }
24            }
25        }
26        return dp[m][n];
27    }
28}

3.复杂度分析

时间复杂度:O(kmn). 空间复杂度:O(mn).

相关文章
|
1月前
|
存储 机器学习/深度学习 算法
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
蓝桥杯Python编程练习题的集合,涵盖了从基础到提高的多个算法题目及其解答。
60 3
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
|
18天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
1月前
|
机器学习/深度学习 人工智能 算法
【MM2024】面向 StableDiffusion 的多目标图像编辑算法 VICTORIA
阿里云人工智能平台 PAI 团队与华南理工大学合作在国际多媒体顶级会议 ACM MM2024 上发表 VICTORIA 算法,这是一种面向 StableDiffusion 的多目标图像编辑算法。VICTORIA 通过文本依存关系来修正图像编辑过程中的交叉注意力图,从而确保关系对象的一致性,支持用户通过修改描述性提示一次性编辑多个目标。
|
1月前
|
算法 Java C++
【贪心算法】算法训练 ALGO-1003 礼物(C/C++)
【贪心算法】算法训练 ALGO-1003 礼物(C/C++)
【贪心算法】算法训练 ALGO-1003 礼物(C/C++)
|
1月前
|
算法 C++
蓝桥 算法训练 共线(C++)
蓝桥 算法训练 共线(C++)
|
4月前
knn增强数据训练
【7月更文挑战第27天】
36 10
|
4月前
|
数据采集 编解码 人工智能
破解ChatGPT惊人耗电!DeepMind新算法训练提效13倍,能耗暴降10倍
【7月更文挑战第19天】DeepMind的JEST算法革新AI训练,提升效率13倍,节能10倍。通过联合数据批次选择,预训练指导及多分辨率训练,优化资源利用,降低能耗。实验显示性能提升,达到SOTA水平,但实施需大量资源,依赖优质参考模型。[论文链接](https://arxiv.org/pdf/2406.17711)
69 10
|
4月前
knn增强数据训练
【7月更文挑战第28天】
39 2
|
3月前
|
算法 搜索推荐
支付宝商业化广告算法问题之基于pretrain—>finetune范式的知识迁移中,finetune阶段全参数训练与部分参数训练的效果如何比较
支付宝商业化广告算法问题之基于pretrain—>finetune范式的知识迁移中,finetune阶段全参数训练与部分参数训练的效果如何比较