Python+Qt人脸识别门禁管理系统

简介: 这篇博客针对<<Python+Qt人脸识别门禁管理系统>>编写代码,代码整洁,规则,易读。 学习与应用推荐首选。

程序示例精选

Python+Qt人脸识别门禁管理系统

如需安装运行环境或远程调试,可点击右边主头像昵称进入个人主页查看博主联系方式,由专业技术人员远程协助!

前言

这篇博客针对<<Python+Qt人脸识别门禁管理系统>>编写代码,代码整洁,规则,易读。 学习与应用推荐首选。


文章目录

一、所需工具软件

二、使用步骤

       1. 引入库

       2. 代码实现

      3. 运行结果

三、在线协助

一、所需工具软件

1. Python

2. Qt, OpenCV

二、使用步骤

1.引入库

## coding:utf-8
import sys
import os
import csv
import cv2
from untitled import Ui_mainWindow
import record
import name
from dbase import Record2
from PyQt5 import QtWidgets
from PyQt5 import QtWidgets, QtCore, QtGui
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
from PyQt5.QtCore import *
from PyQt5.QtGui import QPixmap,QPainter

image.gif

2. 代码实现

代码如下:

class myWin(QtWidgets.QMainWindow, Ui_mainWindow):
    def __init__(self):
        super(myWin, self).__init__()
        self.setupUi(self)
        self.pushButton_4.clicked.connect(self.onVideo) #
        self.open_flag = False  #
        self.painter = QPainter(self)  #
        self.pushButton.clicked.connect(self.openFileButton)
        self.pushButton_2.clicked.connect(self.open_name_ui)
        self.pushButton_7.clicked.connect(self.train)
        #self.pushButton_6.clicked.connect(self.faceRecog)
        self.pushButton_3.clicked.connect(self.open_second_ui)
        self.pushButton_5.clicked.connect(self.threadRun)
        self.pushButton_6.clicked.connect(self.switch_video)
        self.timer2 = VideoTimer()
        self.timer2.timeSignal.signal[str].connect(self.videoRecog2)
        self.pushButton_8.clicked.connect(self.recogConform)
        self.pushButton.hide()
        self.pushButton_4.hide()
    def threadRun(self):
        # thread1.start()
        if self.pushButton_5.text() == "模型初始化thread":
            threadSetup()
            # thread1.start()
            self.pushButton_5.setText("停止模型thread")
        elif self.pushButton_5.text() == "停止模型thread":
            # stop_thread(thread1)
            # stop_thread(threadT)
            threadStop()
            print("tttt6")
            self.pushButton_5.setText("模型初始化thread")
    # # 退出系统窗口 X 绑定函数事件
    def closeEvent(self, event):
        # print("test")
        self.box = QMessageBox(QMessageBox.Warning, "系统提示信息", "是否退出系统?")
        qyes = self.box.addButton(self.tr("是"), QMessageBox.YesRole)
        qno = self.box.addButton(self.tr("否"), QMessageBox.NoRole)
        self.box.exec_()
        if self.box.clickedButton() == qyes:
            try:
                threadStop()
            except:
                print("abnormal")
            event.accept()
            QtWidgets.QWidget.closeEvent(self, event)
            sys.exit().accept()
        else:
            event.ignore()
    def switch_video(self):
        # self.timer2.start()
        if self.pushButton_6.text() == "开始检测":
            self.timer2.start()
            print("tttt6")
            self.pushButton_6.setText("暂停检测")
        elif self.pushButton_6.text() == "暂停检测":
            self.timer2.stop()
            print("tttt6")
            self.pushButton_6.setText("开始检测")
    def videoRecog2(self):
        # print("im02: ",im02)
        import cv2
        import numpy as np
        count = 0
        recognizer = cv2.face.LBPHFaceRecognizer_create()
        recognizer.read('face_trainer/trainer.yml')
        cascadePath = "haarcascade_frontalface_default.xml"
        faceCascade = cv2.CascadeClassifier(cascadePath)
        font = cv2.FONT_HERSHEY_SIMPLEX
        print("11")
        gray = cv2.cvtColor(im02, cv2.COLOR_BGR2GRAY)
        faces = faceCascade.detectMultiScale(
            gray,
            scaleFactor=1.2,
            minNeighbors=5,
        )
        if len(faces) == 0:
            print("len(faces)", len(faces))
            frame = cv2.cvtColor(im02, cv2.COLOR_BGR2RGB)
            height, width, bytesPerComponent = frame.shape
            bytesPerLine = bytesPerComponent * width
            self.q_image = QtGui.QImage(frame.data, width, height, bytesPerLine, QtGui.QImage.Format_RGB888).scaled(self.label.height() * 1.5, self.label.height())
            self.label.setPixmap(QPixmap.fromImage(self.q_image))
            self.update()  # 
        if len(faces) == 1:
            for (x, y, w, h) in faces:
                idnum, confidence = recognizer.predict(gray[y:y + h, x:x + w])
                print("confidence", confidence)
                print("idnum", idnum)
                # cv2.putText(img, str(username), (x + 5, y - 5), font, 1, (0, 0, 255), 1)
                confidence2 = round(160 - confidence)
                if confidence2 > 80:
                    cv2.rectangle(im02, (x, y), (x + w, y + h), (0, 255, 0), 3)
                    cv2.putText(im02, str(confidence2) + "%", (x + 5, y + h - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                                (37, 46, 6), 1)
                if confidence2 <= 80:
                    cv2.rectangle(im02, (x, y), (x + w, y + h), (255, 0, 0), 3)
                    cv2.putText(im02, "unknow", (x + 5, y + h - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                                (37, 46, 6), 1)
                frame = cv2.cvtColor(im02, cv2.COLOR_BGR2RGB)
                height, width, bytesPerComponent = frame.shape
                bytesPerLine = bytesPerComponent * width
                self.q_image = QtGui.QImage(frame.data, width, height, bytesPerLine, QtGui.QImage.Format_RGB888) \
                    .scaled(self.label.height() * 1.5, self.label.height())
                self.label.setPixmap(QPixmap.fromImage(self.q_image))
                self.update()  # 
            if confidence2 > 80:
                print("confidence2", confidence2)
                global usernamedb
                global chinese_name
                global idnumberNum
                import dbase
                import sqlite3
                import datetime
                from datetime import datetime
                conn = sqlite3.connect("recordinfo.db", check_same_thread=False)
                curr = conn.cursor()
                curr.execute("select idnumber from name_table")
                # curr.execute('insert into name_table values (null, ?)', [name])
                results = curr.fetchall()
                name_list = []
                for i in results:
                    i = list(i)
                    name_list += i
                print("name_list", name_list)
                print("idnum", idnum)
                usernamedb = name_list[idnum]
                print("usernamedb", usernamedb)
                curr.execute("select chinese_name from name_table")
                results2 = curr.fetchall()
                name_list2 = []
                for i in results2:
                    i = list(i)
                    name_list2 += i
                print(name_list2)
                CHusernamedb = name_list2[idnum]
                print("CHusernamedb", CHusernamedb)
                chinese_name = CHusernamedb
                result = 'Ok'
                curr.execute("select idnumber from name_table")
                results3 = curr.fetchall()
                name_list3 = []
                for i in results3:
                    i = list(i)
                    name_list3 += i
                print(name_list3)
                idnumber = name_list3[idnum]
                print("idnumber", idnumber)
                idnumberNum = idnumber
                # curr.execute('insert into record_table values (null, ?, ?, ?,?,?)',
                #              (usernamedb, datetime.now(), chinese_name, 'Ok', idnumberNum))
                conn.commit()
                conn.rollback()
                curr.close()
                conn.close()
                self.textEdit.setPlainText("姓名" + ' ' + chinese_name + ' ' + "识别成功,门已打开")
                #self.recogConform() #模拟开门暂时不保存识别数据到数据库,以免人没离开摄像头重复保存多的数据到数据库,暂时用界面上识别手动确认保存识别信息到数据库
                # msg_box = QMessageBox(QMessageBox.Warning, '信息', '人脸识别成功')
                # msg_box.exec_()
        # frame = cv2.cvtColor(im02, cv2.COLOR_BGR2RGB)
        # height, width, bytesPerComponent = frame.shape
        # bytesPerLine = bytesPerComponent * width
        #
        # self.q_image = QtGui.QImage(frame.data, width, height, bytesPerLine, QtGui.QImage.Format_RGB888) \
        #     .scaled(self.label.height() * 0.8, self.label.height() * 0.6)
        # self.label.setPixmap(QPixmap.fromImage(self.q_image))
        # self.update()
    def recogConform(self):
        global usernamedb
        global chinese_name
        global idnumberNum
        import dbase
        import sqlite3
        import datetime
        from datetime import datetime
        conn = sqlite3.connect("recordinfo.db", check_same_thread=False)
        curr = conn.cursor()
        curr.execute('insert into record_table values (null, ?, ?, ?,?,?)',
                     (usernamedb, datetime.now(), chinese_name, 'Ok', idnumberNum))
        conn.commit()
        conn.rollback()
        curr.close()
        conn.close()
        self.textEdit.append("识别保存成功")
        # msg_box = QMessageBox(QMessageBox.Warning, '信息', '识别保存成功')
        # msg_box.exec_()
    def openFileButton(self):
        #imgName, imgType  = QFileDialog.getOpenFileName(self,"打开文件","./","files(*.*)")
        self.cap = cv2.VideoCapture(0)
        self.pushButton_4.clicked.connect(self.onVideo) #
        self.open_flag = True  #
        self.painter = QPainter(self)  #
    def onVideo(self):
        print("self.open_flag: ", self.open_flag)
        if self.open_flag:
            self.pushButton_4.setText('Open')
            print("change1")
        else:
            self.pushButton_4.setText('Close')
            print("change2")
        self.open_flag = bool(1-self.open_flag)
        print("change3")

image.gif

3. 运行结果

image.gif



三、在线协助:

如需安装运行环境或远程调试, 可点击右边 主头像 昵称 进入个人主页查看博主联系方式 ,由专业技术人员远程协助!
1)远程安装运行环境,代码调试
2)Qt, C++, Python入门指导
3)界面美化
4)软件制作


博主推荐文章:python人脸识别统计人数qt窗体-CSDN博客

博主推荐文章:Python Yolov5火焰烟雾识别源码分享-CSDN博客

                        Python OpenCV识别行人入口进出人数统计_python识别人数-CSDN博客

个人博客主页:alicema1111的博客_CSDN博客-Python,C++,网页领域博主

博主所有文章点这里:alicema1111的博客_CSDN博客-Python,C++,网页领域博主


相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
118 55
|
28天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品安全追溯系统的深度学习模型
使用Python实现智能食品安全追溯系统的深度学习模型
58 4
|
17天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
99 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
18天前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习的果蔬识别系统实现
果蔬识别系统,主要开发语言为Python,基于TensorFlow搭建ResNet卷积神经网络算法模型,通过对12种常见的果蔬('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜')图像数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django框架搭建Web网页端可视化操作界面,以下为项目实现介绍。
29 4
基于Python深度学习的果蔬识别系统实现
|
2月前
|
机器学习/深度学习 传感器 存储
使用 Python 实现智能地震预警系统
使用 Python 实现智能地震预警系统
138 61
|
1月前
|
弹性计算 数据管理 数据库
从零开始构建员工管理系统:Python与SQLite3的完美结合
本文介绍如何使用Python和Tkinter构建一个图形界面的员工管理系统(EMS)。系统包括数据库设计、核心功能实现和图形用户界面创建。主要功能有查询、添加、删除员工信息及统计员工数量。通过本文,你将学会如何结合SQLite数据库进行数据管理,并使用Tkinter创建友好的用户界面。
61 2
从零开始构建员工管理系统:Python与SQLite3的完美结合
|
1月前
|
Python
Python之音乐专辑管理系统
音乐专辑管理系统是一款用于管理和维护音乐专辑信息的应用程序,支持添加、删除、修改和查询专辑详情(如专辑名、艺术家、发行日期及曲目列表)。系统运行需Python 3.x环境,硬件要求较低,适合个人及小型团队使用。
51 4
|
1月前
|
Python
Python实现摇号系统
本文介绍了如何使用Python构建一个简单的摇号系统,包括用户输入、随机抽取、结果展示和日志记录等功能。通过导入`random`、`datetime`和`logging`模块,实现了从参与者名单中随机抽取中奖者,并记录每次摇号的结果,方便后续查看和审计。完整代码示例提供了从功能实现到主程序调用的全过程。
35 2
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
79 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
1月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
89 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型