✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
在机器学习领域,回归预测是一个重要的任务,它用于预测连续型变量的值。近年来,深度学习技术的快速发展为回归预测提供了新的解决方案。然而,传统的深度学习方法在处理大规模数据集时可能会遇到一些问题,例如训练时间长、模型复杂度高等。为了解决这些问题,研究人员提出了一种基于向量加权算法改进的深度学习极限学习机(DELM)模型,该模型能够更有效地进行数据回归预测。
DELM模型是一种基于神经网络的回归预测模型,它通过将输入数据映射到隐层特征空间中,然后使用线性回归模型对映射后的特征进行预测。与传统的深度学习方法相比,DELM模型具有以下几个优势。
首先,DELM模型采用了向量加权算法来选择有效的特征。在传统的深度学习方法中,所有的特征都被同时用于预测,这可能导致一些无关紧要的特征对预测结果产生干扰。而DELM模型通过向量加权算法,能够根据特征的重要性对其进行加权,从而选择出对预测结果更有贡献的特征。
其次,DELM模型在训练过程中采用了增量学习的策略。在传统的深度学习方法中,模型通常需要重新训练才能适应新的数据。而DELM模型通过增量学习的策略,可以在已有模型的基础上,通过少量的训练样本进行模型更新,从而更好地适应新的数据。
此外,DELM模型还具有较低的计算复杂度。由于采用了向量加权算法和增量学习的策略,DELM模型在处理大规模数据集时能够大大减少计算时间和模型复杂度,提高了预测效率。
为了验证DELM模型的性能,研究人员进行了一系列实验。实验结果表明,DELM模型在各种数据集上都取得了较好的回归预测效果,且能够在较短的时间内完成训练。与传统的深度学习方法相比,DELM模型具有更高的预测准确性和更快的训练速度。
总的来说,基于向量加权算法改进的深度学习极限学习机(DELM)模型是一种有效的数据回归预测方法。它通过选择有效的特征、采用增量学习的策略和降低计算复杂度,提高了回归预测的准确性和效率。未来,我们可以进一步研究和改进DELM模型,以适应更复杂的回归预测任务,并在实际应用中发挥更大的作用。
⛄ 核心代码
%% DELM训练函数%输入-----------------------%P_train 输入数据,数据格式为N*dim,N代表数据组数,dim代表数据维度。%T_train 输入标签数据%ActiveF 为激活函数,如'sig','sin','hardlim','tribas'等。%C为正则化系数%输出: outWeight为输出权重function OutWeight = DELMTrain(P_train,T_train,ELMAEhiddenLayer,ActivF,C)hiddenLayerSize = length(ELMAEhiddenLayer); %获取ELM-AE的层数outWieght = {};%用于存放所有的权重P_trainOrg = P_train;%% ELM-AE提取数据特征for i = 1:hiddenLayerSize [~,B,Hnew] = ELM_AE(P_train,ActivF,ELMAEhiddenLayer(i)); %获取权重 OutWeight{i} = B'; P_train =P_train*B'; %输入经过第一层后传递给下一层end%% 最后一层ELM进行监督训练P = P_train;N =size(P,2);I = eye(N);beta = pinv((P'*P+I/C))*P'*T_train;OutWeight{hiddenLayerSize + 1} = beta; %存储最后一层ELM的信息。end
⛄ 运行结果
⛄ 参考文献
[1] 全凌翔.基于多信息的转炉炼钢建模与优化算法研究[J].[2023-08-27].
[2] 周莉,刘东,郑晓亮.基于PSO-DELM的手机上网流量预测方法.2021[2023-08-27].DOI:10.16208/j.issn1000-7024.2021.02.003.
[3] 吴向明,杨晨光,韩光,等.分时电价预测方法,装置及终端设备:CN202111170936.5[P].CN202111170936.5[2023-08-27].