m基于毫米波大规模MIMO系统的的混合GMD波束形成算法matlab误码率仿真

简介: m基于毫米波大规模MIMO系统的的混合GMD波束形成算法matlab误码率仿真

1.算法仿真效果
matlab2022a仿真结果如下:

94e67c4d66fae83b901ba12dbdd3fce5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
毫米波通信作为第五代移动通信(5G)和未来通信系统的重要技术,能够提供更高的数据传输速率和更大的系统容量。然而,毫米波通信在传输过程中容易受到路径损耗和大气衰减的影响,因此需要采用有效的波束形成算法来提高信号质量。混合波束形成技术结合了射频(RF)和基带(BB)波束形成的优点,能够有效地抵消信道损耗。

e523c13f3fd902eb693a51fbe191c16e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

实现过程

信道估计:在实际系统中,信道信息通常是未知的,因此需要进行信道估计。可以通过发送已知的训练序列,并通过接收到的信号估计RF和BB信道矩阵。

RF权重计算:利用估计得到的RF信道矩阵,计算RF权重向量$\mathbf{w}_r$。可以采用GMD算法选择与信道向量$\mathbf{h}_r$成正比的权重向量。

BB权重计算:利用估计得到的BB信道矩阵,计算BB权重向量$\mathbf{w}_b$。同样,可以采用GMD算法选择与信道向量$\mathbf{h}_b$成正比的权重向量。

信号传输:将发送的信号$\mathbf{x}$通过RF和BB权重向量进行波束形成,得到最终的传输信号$\hat{x}$。

3.MATLAB核心程序

            GH          = G';UH=U';
            G_1         = GH(1:Nsym,:);
            yc_svd      = UH(1:Nsym,:)*yo_svd;
            yc_gmd      = G_1*yo_gmd;

            W_hysvd     = Wbb(:,:,jc)'*W_somp';
            yc_somp_svd = sqrt(Nsym/Nrf)*W_hysvd*yo_hysvd;

            W_hygmd     = G_SOMP'*W_somp';
            yc_somp_gmd = sqrt(Nsym/Nrf)*W_hygmd*yo_hygmd;


            %SVD解码
            tmp1      = func_VBLAST_decoder(yc_svd,Nsym,S(:,1:Nsym));
            msg_svd   = func_deQAM16(tmp1);

            tmp2      = func_VBLAST_decoder(yc_somp_svd,Nsym,S(:,1:Nsym));
            msg_hysvd = func_deQAM16(tmp2);

            %GMD-SIC解码
            tmp3      = func_VBLAST_decoder(yc_gmd,Nsym,M(:,1:Nsym));
            msg_gmd   = func_deQAM16(tmp3);

            tmp4      = func_VBLAST_decoder(yc_somp_gmd,Nsym,M2);
            msg_hygmd = func_deQAM16(tmp4);


            %错误计数
            cnt_svd   = cnt_svd + sum(msg1~= msg_svd);         
            cnt_hygmd = cnt_hygmd + sum(msg1~= msg_hysvd);                
            cnt_gmd   = cnt_gmd + sum(msg1~= msg_gmd);
            cnt_hysvd = cnt_hysvd + sum(msg1~= msg_hygmd);

        end

    end
    err_svd(ij)   = cnt_svd/N_tbits;
    err_gmd(ij)   = cnt_gmd/N_tbits;
    err_hysvd(ij) = cnt_hysvd/N_tbits;
    err_hygmd(ij) = cnt_hygmd/N_tbits;
end

figure;
semilogy(SNRss,smooth(err_svd),'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
semilogy(SNRss,smooth( err_hygmd),'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
hold on
semilogy(SNRss,smooth(err_gmd),'-b^',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.2,0.9,0.5]);
hold on
semilogy(SNRss,smooth( err_hysvd),'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on

xlabel('SNR (dB)')
ylabel('BER')
legend('全数字SVD','混合SVD','全数字GMD','混合GMD');
grid on
相关文章
|
1天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
2天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
2天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
2天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
15 3
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
189 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
122 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
87 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
6月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)