Sentieon|应用教程:利用Sentieon Python API引擎为自研算法加速

简介: Sentieon|应用教程:利用Sentieon Python API引擎为自研算法加速

背景

Sentieon套装中所有模块的速度都远超对应开源软件的数倍至数十倍,用户在使用这些模块的同时,有时也希望Sentieon团队可以帮助加速自己开发的定制化软件。为了帮助这些用户能在自研软件上享受到Sentieon模块的速度,我们开发了Python API系统, 满足用户二次开发,自主加速的需求。

API介绍

Sentieon Python API本质上是一套沟通系统,连接了用户的数据分析脚本与Sentieon的高速引擎,在加速的同时也提升了脚本的可读性与可维护性。

Sentieon的数据处理引擎是Sentieon多个模块的核心,可以高速分析BAM/CRAM和FASTA格式的数据文件。引擎同时支持single-pass以及multithreaded execution这两种数据流方式。其中Multithreaded数据流速度较快,也相对比较复杂,会将基因组分拆为默认长度1Gb的片段(Fragment),Sentieon引擎会并行地在每个线程中独立处理单个片段;每个片段又会被分拆为默认长度1Kb的小片段(Step),引擎会线性的依次处理这些小片段。在此过程中,用户软件的数据处理逻辑将会得到高速执行。

实施案例

下面我们通过一个与美国圣朱迪儿童研究医院(St Jude Children’s Research Hospital)的CREST软件团队的合作案例展现Sentieon的加速效果。CREST (Clipping REveals Structure)是业内一款著名的检测癌症基因组结构变异的软件,主要通过断点(Breakpoints)作为线索来检测基因组中的结构变异。具体来说,CREST软件的流程中包括了soft-clip检测,组装,组装后比对,断点确认,结构变异确认等步骤。其中的组装与比对步骤主要依赖于第三方工具完成。CREST的优势是准确度较高,然而速度方面的缺陷同样明显,对于一个标准30x肿瘤全基因组配对样本来说,在20线程的工作站的处理时间长达24小时,很难满足用户的需求。

在了解到Sentieon Python API的功能之后,CREST团队使用这套系统重新实现了CREST的功能。在测试数据中,利用Sentieon加速版CREST达到了10倍的提速,结果与原版的CREST完全一致。在20线程的工作站中将绝大多数样本的处理时间降低到了1小时以内。

下面我们介绍另外两个应用加速案例。质量控制是NGS数据处理流程中的重要步骤,虽然逻辑比较简单,然而涉及到对于BAM/CRAM文件的大量读取工作,这些工具在速度,多线程并行,以及代码的可维护性上往往难以兼得。

Sentieon Python API可以将质控工具的算法逻辑与数据读取分开,同时提升速度与代码可读性。作为实施案例,我们利用Python API加速了Picard的CollectInsertSizeMetrics工具,快速统计insert size;另外我们也加速了GATK的CalculateTargetCoverge工具,快速统计目标区域的深度。用户也可参考此案例,加速自研的质控工具。

技术支持

Sentieon Python API可以让用户的脚本与Sentieon引擎沟通,高速并行读取BAM/CRAM/FASTA文件,提速10倍以上。用户可以利用这个平台进行二次开发,加速自研软件,我们非常愿意提供详尽的技术支持。

Sentieon软件介绍

Sentieon为完整的纯软件基因变异检测二级分析方案,其分析流程完全忠于BWA、GATK、MuTect2、STAR、Minimap2、Fgbio、picard等金标准的数学模型。在匹配开源流程分析结果的前提下,大幅提升WGS、WES、Panel、UMI、ctDNA、RNA等测序数据的分析效率和检出精度,并匹配目前全部第二代、三代测序平台。

Sentieon软件团队拥有丰富的软件开发及算法优化工程经验,致力于解决生物数据分析中的速度与准确度瓶颈,为来自于分子诊断、药物研发、临床医疗、人群队列、动植物等多个领域的合作伙伴提供高效精准的软件解决方案,共同推动基因技术的发展。

截至2023年3月份,Sentieon已经在全球范围内为1300+用户提供服务,被世界一级影响因子刊物如NEJM、Cell、Nature等广泛引用,引用次数超过700篇。此外,Sentieon连续数年摘得了Precision FDA、Dream Challenges等多个权威评比的桂冠,在业内获得广泛认可。


软件试用:https://www.insvast.com/sentieon

目录
相关文章
|
3天前
|
Python
SciPy 教程 之 Scipy 显著性检验 3
本教程介绍Scipy显著性检验,包括其基本概念、原理及应用。显著性检验用于判断样本与总体假设间的差异是否显著,是统计学中的重要工具。Scipy通过`scipy.stats`模块提供了相关功能,支持双边检验等方法。
10 1
|
5天前
|
机器学习/深度学习 Python
SciPy 教程 之 SciPy 插值 2
SciPy插值教程:介绍插值概念及其在数值分析中的应用,特别是在处理数据缺失时的插补和平滑数据集。SciPy的`scipy.interpolate`模块提供了强大的插值功能,如一维插值和样条插值。通过`UnivariateSpline()`函数,可以轻松实现单变量插值,示例代码展示了如何对非线性点进行插值计算。
10 3
|
6天前
|
监控 搜索推荐 安全
探究亚马逊详情API接口:开发与应用
在数字化时代,亚马逊作为全球领先的电商平台,为商家和消费者提供了丰富的商品信息和便捷的购物体验。本文深入探讨了亚马逊详情API接口的获取与运用,帮助开发者和商家实时监控商品数据、分析市场趋势、优化价格策略、分析竞争对手、构建推荐系统及自动化营销工具,从而在竞争中占据优势。文章还提供了Python调用示例和注意事项,确保API使用的安全与高效。
27 3
|
8天前
|
机器学习/深度学习 数据处理 Python
SciPy 教程 之 SciPy 空间数据 4
本教程介绍了SciPy的空间数据处理功能,主要通过scipy.spatial模块实现。内容涵盖空间数据的基本概念、距离矩阵的定义及其在生物信息学中的应用,以及如何计算欧几里得距离。示例代码展示了如何使用SciPy计算两点间的欧几里得距离。
22 5
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
21 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
16 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
16 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
7天前
|
机器学习/深度学习 Python
SciPy 教程 之 SciPy 空间数据 6
本教程介绍了SciPy处理空间数据的方法,包括使用scipy.spatial模块进行点位置判断、最近点计算等内容。还详细讲解了距离矩阵的概念及其应用,如在生物信息学中表示蛋白质结构等。最后,通过实例演示了如何计算两点间的余弦距离。
17 3
|
6天前
|
机器学习/深度学习 数据处理 Python
SciPy 教程 之 SciPy 空间数据 7
本教程介绍了SciPy的空间数据处理功能,涵盖如何使用`scipy.spatial`模块进行点的位置判断、最近点计算等操作。还详细解释了距离矩阵的概念及其在生物信息学中的应用,以及汉明距离的定义和计算方法。示例代码展示了如何计算两个点之间的汉明距离。
13 1
|
8天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
25 2