【机器学习】十大算法之一 “线性回归”

简介: 机器学习是人工智能的一个重要分支,它利用各种算法和模型,通过分析和理解数据,让机器学习到一个智能模型,从而对数据作出预测和判断。回归分析是一种基于统计学方法的数学分析技术,用于描述两个或多个变量之间的关系。线性回归是一种最简单的回归分析方法,它使用最小二乘法来拟合一个关于自变量的线性函数,以预测其与因变量之间的相互作用关系。线性回归是机器学习领域中最为常见的算法之一,它是一个简单但非常有效的算法,常用于数据挖掘和机器学习的预测分析,例如房价预测、销售额预测等等。

对于数据科学和机器学习领域的专业人员来说,线性回归算法是一项必学技能。线性回归建立在数学基础上,是机器学习区别于传统计算机算法的一个关键方面。

本文将详细讲解机器学习十大算法之一“线性回归”


image.png
一、简介
机器学习是人工智能的一个重要分支,它利用各种算法和模型,通过分析和理解数据,让机器学习到一个智能模型,从而对数据作出预测和判断。
    回归分析是一种基于统计学方法的数学分析技术,用于描述两个或多个变量之间的关系。线性回归是一种最简单的回归分析方法,它使用最小二乘法来拟合一个关于自变量的线性函数,以预测其与因变量之间的相互作用关系。

    线性回归是机器学习领域中最为常见的算法之一,它是一个简单但非常有效的算法,常用于数据挖掘和机器学习的预测分析,例如房价预测、销售额预测等等。它是一种最简单的算法,但是能够显示出非常高的准确度。

二、发展史
线性回归算法的历史可以追溯到18世纪初。最早的应用可以追溯到1757年,当时政治学家、经济学家、统计学家约翰·格拉斯哥(John Graunt)使用回归分析方法来探究英国人口与疾病之间的关系。

    尽管线性回归方法的数学基础是在19世纪初被发现的,但其实际应用则在20世纪20年代及30年代才真正开始拓展。这是因为直到计算机的发明,我们才具备了处理如此复杂的计算所需的计算能力。并且线性回归被认为是最早的回归分析方法之一。

    19世纪末,当时高斯和勒让德独立地开发了最小二乘法。这种方法可以对数据进行拟合,并找到最适合的一条直线来表示数据之间的关系。1895年,皮尔逊提出了相关系数的概念,将线性回归引入统计学领域。20世纪前半叶,Fisher、Neyman等人提出了一系列参数估计方法,进一步发展了线性回归模型。20世纪后半叶,随着计算机技术和数据处理能力的提高,线性回归算法不断得到完善和拓展,如岭回归、Lasso、ElasticNet等。

    计算机硬件的发展极大程度地促进了线性回归算法的拓展,可用的数据量和数据复杂度都得以不断提高。直至今日,研究人员和学者们继续探索和改进线性回归算法,以期其能得到更好的拟合效果。

三、算法公式
线性回归算法用于预测连续值的单变量或多变量方法。在机器学习中,X通常表示自变量或特征,Y表示因变量或预测结果。线性回归是由以下方程组成的线性模型:
image.png
其中,β0​,β1​,...,βn​称为参数,x1​,x2​,...,xn​称为特征,ϵ称为误差项。线性回归的目标是通过最小化误差项,找到最适合数据的参数。

    线性回归有两种常见的类型:简单线性回归和多元线性回归。在简单线性回归中,自变量只有一个,因变量为连续值。多元线性回归则包括两个或多个自变量,并且仍然预测一个连续值的因变量。

    1. 简单线性回归
    简单线性回归只有一个自变量和一个因变量,其模型可表示为:

image.png
其中,y表示因变量,x表示自变量,β0​为截距,β1​为斜率,ϵ为误差项。

    对于简单线性回归,我们的目标是找到最适合数据的β0​ 和β1​。这意味着我们需要找到一条直线,使得每个数据点到线的距离最小,即使误差项最小化。最小化误差的方法是使用最小二乘法,它是一种常用的统计方法,可以用于拟合线性回归模型。最小二乘法的做法是使得各数据点到直线的距离平方和最小。这些距离以误差项的形式来表示,即:

image.png
其中,y^​表示直线上某个数据点的预测值,yi​表示实际的因变量值。

    为了找到最优的 β0​ 和 β1​,我们需要通过以下公式求解:

image.png
其中,xˉ和yˉ​分别表示自变量和因变量的平均值。

    2. 多元线性回归
    多元线性回归是通过使用两个或多个自变量和一个连续因变量来建立模型。与简单线性回归类似,我们可以使用最小二乘法来拟合数据。其模型可表示为:

image.png
其中,x1​,x2​,...,xp​称为特征或自变量,β0​,β1​,...,βp​称为参数,ϵ称为误差项。

    多元线性回归的目的是找到最具预测性的独立变量的贡献,并用这些变量来建立最佳模型。为了找到最优的 βi​,我们需要求解以下公式:

image.png
其中,βi​为参数,Y为因变量,X为自变量矩阵,X^T为矩阵的转置。

四、算法原理
线性回归算法的原理非常简单,它可以简单描述为以下几个步骤:

收集数据:通过收集自变量和因变量的数据,建立数据集。

处理数据:对数据进行处理,例如去除异常值、填补缺失值、标准化数据等。

拟合模型:使用最小二乘法拟合线性回归模型。

预测结果:通过新的自变量值,使用拟合好的线性模型预测因变量的值。

    线性回归算法的重要性在于其简单性和可解释性。该算法旨在确定因变量与自变量之间是否存在一种线性关系。如果存在的话,我们可以使用模型的参数来描述这种线性关系,进而对新的数据进行预测。

    比如,我们可以使用线性回归模型来预测房屋的价格。为此,我们需要收集一些数据,例如房屋的面积、所在位置、建筑年代等等。通过这些数据,我们可以拟合一个线性模型,以描述房屋价格与这些变量之间的关系。最后,我们可以使用这个线性模型来预测新房屋的价格。

五、算法功能
线性回归算法是一种非常有用的工具,它可以用于许多应用程序,如预测房价、股票价格、销售额、客流量等。线性回归算法广泛应用于广告、金融、物流和其他行业中。以下是线性回归算法的主要功能和应用:

预测:线性回归可以用于预测因变量与自变量之间的关系。例如,我们可以使用线性回归来预测新的销售额。

探索性分析:线性回归可以用于探索性分析。例如,我们可以使用线性回归来分析两个或多个因变量之间的关系。

假设检验:线性回归可以用于假设检验。例如,我们可以使用线性回归来测试两个或多个变量之间的关系是否显著。

模型选择:线性回归可以用于模型选择。例如,我们可以比较不同的模型来确定哪一个最适合我们的数据。

拓展性:线性回归非常容易扩展。它可以轻松应用到多元线性回归,也可以应用于非线性回归。

解析性计算:线性回归可以进行解析计算,而不需要通过特定的算法获得可靠的结果。

易理解性:线性回归是一种简单而可理解的算法,它不需要进行过多的数学或统计学习。

六、示例代码
下面我们通过一个简单的例子来演示线性回归算法的应用。

    首先,我们需要准备一些样本数据,以房价预测为例,每个样本有两个特征:房屋面积和房间数量。样本数据可以存储在一个CSV文件中,如下所示:

area,rooms,price
2600,3,550000
3000,4,565000
3200,4,610000
3600,5,680000
4000,6,725000
    接下来,我们可以使用Python中的Pandas库来读取数据文件: 

import pandas as pd

df = pd.read_csv('data.csv')
X = df.iloc[:, :-1].values
y = df.iloc[:, -1].values
    然后,我们可以使用Scikit-Learn库中的线性回归模型来进行训练和预测: 

from sklearn.linear_model import LinearRegression

regressor = LinearRegression()
regressor.fit(X, y)
y_pred = regressor.predict(X)

        最后,我们可以将预测结果进行可视化,如下所示:

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.plot(X[:, 0], y, 'o', label='Data')
ax.plot(X[:, 0], y_pred, 'r-', label='Linear Regression')
ax.legend()
plt.show()
    该代码将生成一张图,显示出样本数据和线性回归模型的预测结果。从图中可以看出,线性回归模型较好地拟合了样本数据:

image.png
完整代码


# -*- coding: utf-8 -*-
import pandas as pd
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt


if __name__ == '__main__':
    df = pd.read_csv('data.csv')
    X = df.iloc[:, :-1].values
    y = df.iloc[:, -1].values
    regressor = LinearRegression()
    regressor.fit(X, y)
    y_pred = regressor.predict(X)
    fig, ax = plt.subplots()
    ax.plot(X[:, 0], y, 'o', label='Data')
    ax.plot(X[:, 0], y_pred, 'r-', label='Linear Regression')
    ax.legend()
    plt.show()

七、总结
使用线性回归算法进行样本数据的拟合和预测非常简单,只需要选择一个优秀的Python机器学习库,如Scikit-Learn或TensorFlow等,即可完成代码的编写和运行。

    线性回归算法作为机器学习领域中最基础的算法之一,已被广泛应用于各种领域,包括科学、工程、医疗、社会科学等。使用线性回归算法,我们能够很好地处理线性关系的数据,预测结果也较为准确和稳定。

    然而,线性回归算法确实比较局限,只能处理一些简单的线性关系,无法很好地处理非线性关系的数据,且容易受到异常值和噪声的干扰。因此,在实际使用线性回归算法时,需要注意这些缺点,结合实际问题和数据特点进行合理选择。

image.png

目录
相关文章
|
8天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
29 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
29天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
56 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
1月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
18天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
22天前
|
机器学习/深度学习 数据采集 算法
探索机器学习中的线性回归
【10月更文挑战第25天】本文将深入浅出地介绍线性回归模型,一个在机器学习领域中广泛使用的预测工具。我们将从理论出发,逐步引入代码示例,展示如何利用Python和scikit-learn库实现一个简单的线性回归模型。文章不仅适合初学者理解线性回归的基础概念,同时也为有一定基础的读者提供实践指导。
|
1月前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
34 0
|
28天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。

热门文章

最新文章

下一篇
无影云桌面