优化模型:Matlab线性规划

简介: 优化模型:Matlab线性规划

写在前面:

博主本人大学期间参加数学建模竞赛十多余次,获奖等级均在二等奖以上。为了让更多学生在数学建模这条路上少走弯路,故将数学建模常用数学模型算法汇聚于此专栏,希望能够对要参加数学建模比赛的同学们有所帮助。


1.基本原理


一般线性规划问题的数学标准型为


c6a04fe37b48ac7fa846261b12730a3e_d33a38bc6ab74785b9497ac1b3cdc3dc.png


满足约束条件的解,称为可行解,使目标函数达到最大值的可行解称为最优解。所有可行解构成的集合称为问题的可行域。


Matlab中规定线性规划的标准形式为


c3a25d614e77a586d376fa05ac21e856_c8752dca2325407cadfb38233f8f33e2.png


式中:f,x,b,beq,lb,ub为列向量,其中f称为价值向量,b称为资源向量,A,Aeq为矩阵。


Matlab中求解线性规划的命令为


[x,fval]=linprog(f,A,b)


[x,fval]=linprog(f,A,b,Aeq,beq)


[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub)


其中:x返回决策向量的取值,fval返回目标函数的最优值,A和b对应线性不等约束;Aeq和beq对应线性等式约束;lb和ub分别对应x的下界向量和上界向量。


2.案例分析


例1 使用Matlab软件求解下列线性规划问题。


173a78ef8959d956ebe64cd4483b0fc9_a6d30e5344d14cacbe352b61869d9b65.png


Matlab代码:


f=[-3;1;1];
a=[1,-2,1;4,-1,-2];
b=[11,-3];
aeq=[-2,0,1];
beq=1;
[x,y]=linprog(f,a,b,aeq,beq,zeros(3,1));
x,y=-y

求解结果为:


x1=4,x2=1,x3=9,z的最大值为2。


例2 一架货机有三个货舱:前舱、中仓和后舱。三个货舱所能装载的货物的最大重量和体积有限制如表5所示。并且为了飞机的平衡,三个货舱装载的货物重量必须与其最大的容许量成比例。


7b91d652157708df7f9c8f599f6f1eec_6194bd78dcf140cfbd7ef6f88c9b01e0.png


现有四类货物用该货机进行装运,货物的规格以及装运后获得的利润如表6所示:


317ac09f32236e6408c5e16798a97df4_2d15608c5ea842698a2f6691da41dd55.png


假设:


(1)每种货物可以无限细分;


(2)每种货物可以分布在一个或者多个货舱内;


(3)不同的货物可以放在同一个货舱内,并且可以保证不留空隙。 问应如何装运,使货机飞行利润最大?


解:用=1,2,3,4分别表示货物1,货物2,货物3和货物4;=1,2,3分别表示前舱、中舱和后舱。设表示第i种货物装在第j个货舱内的重量,分别表示第j个舱的重量限制和体积限制,分别表示可以运输的第i种货物的重量,单位重量所占的空间和单位货物的利润,则目标函数为


3c6f57da2c2f33347295b4f3cc1b26eb_9892d5f5dd114fb994ed1bdce09d475c.png


约束条件为


5e6ebc0aaa0dfff068ad2a8ff4030b89_b651574f9e90410bae49955f085ada05.png


Matlab代码:


clc,clear
c=[3100;3800;3500;2850];
c=c*ones(1,3);
c=c(:);%把矩阵转化成一列
a1=zeros(4,12);
for i=1:4
    a1(i,i:4:12)=1;
end
b1=[18;15;23;12];
a2=zeros(3,12);
for i=1:3
    a2(i,4*i-3:4*i)=1;
end
b2=[10;16;8];
a3=zeros(3,12);
bb=[480;650;580;390];
for j=1:3
    a3(j,4*j-3:4*j)=bb;
end
b3=[6800;8700;5300];
a=[a1;a2;a3];b=[b1;b2;b3];
aeq=zeros(2,12);
aeq(1,1:4)=1/10;
aeq(1,5:8)=-1/16;
aeq(2,5:8)=1/16;
aeq(2,9:12)=-1/8;
beq=zeros(2,1);
[x,y]=linprog(-c,a,b,aeq,beq,zeros(12,1));
x=reshape(x,[4,3])
x=sum(x'),y=-y


利用Matlab求解得到每个货舱存放每种货物的结果如下


2ad1740ab1d0a33b4718452f93ed10c2_3ca2f88a193c4bfdaa8737ce001ad888.png


即四种货物的吨数分别为0t,15t,15.9474t,3.0526t,总利润为121520元。


目录
相关文章
|
1天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
7天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
16天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
13天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
17天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
13天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
17天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
15天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
222 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
139 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现