数据分析 | Numpy实战(二) - 分析各类用户平均骑行时间

简介: 数据分析 | Numpy实战(二) - 分析各类用户平均骑行时间

本次复习的知识点如下:

  • 布尔型数组及数据过滤
  • 多维数组的构造
  • 使用numpy保存文本文件
  • matplotlib折线图绘制
  • matplotlib图表常用属性的设置方法
  • 图表的保存

关于数据源

上次的文章发出之后发现忘了补充数据源的链接,之后咸鱼补充在留言区了,有需要动手实践的朋友可以自取,下面是直通车:

数据分析 | Numpy实战(一) - 分析某单车骑行时间

分析目标

观察上次的数据,数据中有的数据有会员与非会员两种用户类别。

这次我们主要分析一下两种类别用户的平均骑行时间对比。

数据读取与数据清洗

根据上次的流程示意图我们主要遵循下面几个步骤:

图 | 源自网络

但是在实际操作中发现,本次的实战数据非常干净,完全可以把我们的数据读取和数据清洗代码结合到一起来实现代码简化的目的。

此处代码可以简化为:

# 数据读取,数据清洗
def data_collection():
    clndata_arr_list = []
    for data_filename in data_filenames:
        file = os.path.join(data_path, data_filename)
        data_arr = np.loadtxt(file, skiprows=1, delimiter=',', dtype=bytes).astype(str)
        cln_data_arr = np.core.defchararray.replace(data_arr, '"', '')
        clndata_arr_list.append(cln_data_arr)
    return clndata_arr_list

在上一篇的文章中,具体的实现原理已经做过说明这里就不多做赘述。

数据分析

根据这次的分析目标,我们除了取出第一列的Duration (ms)同时还要取出最后一列Member type

我们可以使用布尔型数组对我们的数据进行过滤,具体的使用方法可以参考下面这篇文章:

Data Science | Numpy基础(二)

我们可以先看下完成后的这部分代码:

# 数据分析
def mean_data(clndata_arr_list, member_type):
    duration_mean_list = []
    for cln_data in clndata_arr_list:
        bool_arr = cln_data[:, -1] == member_type
        filter_arr = cln_data[bool_arr]
        duration_mean = np.mean(filter_arr[:, 0].astype('float')/ 1000 / 60)
        duration_mean_list.append(duration_mean)
    return duration_mean_list

这里我们传入一个member_type,用单个标量member_type和取出的向量cln_data[:, -1]做比较,以筛选出我们需要的数据。

在数学上标量和向量是没办法比对的,毕竟维度不同,但是在numpy中它的广播机制很好的为我们实现了这一需求,numpy可以将单个标量变成比对数据同样的数据维度,这样就可以进行一对一比对,达到使用布尔型数组筛选数据的需求了。

至于其余关于数据如何取出平均值等操作在上一篇文章已经做了介绍,接下来进入数据可视化展示的部分。

结果展示

生成的折线图:

生成的csv表格:

生成的数据图表上次美化不少,具体实现可以看下下面的代码,具体美化属性都标注在注释当中。

# 结果展示
def show_data(member_mean_duration_list, casual_mean_duration_list):
    # 构造多维数组
    # 使用fmt方式输出指定格式的数据格式,默认输出科学计数的格式
    mean_duraion_arr = np.array([member_mean_duration_list, casual_mean_duration_list]).transpose()
    np.savetxt('./mean_duration.csv', mean_duraion_arr, delimiter=',',
               header='Member Mean Duraion, Casual Mean Duraion', fmt='%.4f',
               comments='')
    # 生成空白画布
    plt.figure()
    # color指定显示的折线颜色
    # linestyle指定折线的样式
    # marker指定节点样式
    plt.plot(member_mean_duration_list, color='g', linestyle='-', marker='o', label='Member')
    plt.plot(casual_mean_duration_list, color='r', linestyle='--', marker='*', label='Casual')
    plt.title('Member vs Casual')
    # rotation指定下标的倾斜角度
    plt.xticks(range(0, 4), ['1st', '2nd', '3rd', '4th'], rotation=45)
    # xlabel x,y轴的标题
    plt.xlabel('Quarter')
    plt.ylabel('Mean duration (min)')
    plt.legend(loc='best')
    plt.tight_layout()
    plt.savefig('./duration_trend.png')
    plt.show()
相关文章
|
3月前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
136 5
|
3月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
71 2
|
3月前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
116 3
|
3月前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
125 2
|
3月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
4月前
|
机器学习/深度学习 数据采集 算法
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
【10月更文挑战第5天】随着数据科学和机器学习领域的快速发展,处理大规模数据集的能力变得至关重要。Python凭借其强大的生态系统,尤其是NumPy、Pandas和SciPy等库的支持,在这个领域占据了重要地位。本文将深入探讨这些库如何帮助科学家和工程师高效地进行数据分析,并通过实际案例来展示它们的一些高级应用。
98 0
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
|
4月前
|
数据挖掘 索引 Python
Python数据分析篇--NumPy--进阶
Python数据分析篇--NumPy--进阶
39 0
|
4月前
|
数据挖掘 索引 Python
Python数据分析篇--NumPy--入门
Python数据分析篇--NumPy--入门
68 0
|
4月前
|
数据采集 数据可视化 数据挖掘
Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
【10月更文挑战第3天】Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
221 0
|
6月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
109 2