Stable Diffusion 模型库,AIGC 画风任你选

本文涉及的产品
对象存储 OSS,20GB 3个月
对象存储 OSS,内容安全 1000次 1年
云备份 Cloud Backup,100GB 3个月
简介: Stable Diffusion(简称 SD)模型库包含写实、国漫、科技等几十种风格。可以让用户一键转存到自己的存储空间,而后直接挂载到 PAl 或 FC 下进行推理和训练。无需复杂漫长的下载和上传步骤,即可获得多种模型的使用体验,实现云上 AIGC 的快速搭建。

Stable Diffusion 与相关模型库介绍

AI绘画是AIGC的重要分支, Stable Diffusion作为一款底层代码、数据完全开源的高性能开源绘画模型,参数量仅有1B大小,开发者可在消费级GPU上进行本地推理训练与模型部署。为了让更多开发者快速体验Stable Diffusion模型库,加快推理训练过程,阿里云在公共模型库中收录了主流热门的大模型文件,同时提供了并准备了相关方案与实验。

模型文件.png


Stable Diffusion能够通过文本prompt生成图像,模型库包含写实、国漫、科技等几十种风格,文件大小总计 70 GB 左右,后续还会不定期地更新更多的热门模型和类型。更多类型的模型,可访问Modelscope模型社区获取。


开发者可以将模型文件一键转存到自己的存储空间,然后直接挂载到 PAl FC 下进行推理和训练。无论是阿里云对象存储OSS,还是文件存储NAS,都很适合用作模型库存储空间。这样,开发者无需经历复杂漫长的下载和上传步骤,即可获得多种模型的使用体验,实现云上 AIGC 的快速搭建。在本地推理训练开始之前,开发者可以先在云起实验室体验基于PAI-EAS挂载OSS部署AIGC服务、使用FCNAS一键部署Stable Diffusion,熟悉搭建流程。

OSS-模型存储架构示意图.png

点击这里,快速云上部署AIGC服务。


步骤一:通过活动页面一键秒存模型文件

进入《Stable diffusion模型库,AIGC画风任你选》页面活动,在方案1:使用对象存储 OSS 作为模型库存储空间处单击一键复制

image.png

  1. 单击一键复制按钮后,将会弹出公共库转存信息对话框,输入新建对象存储OSS Bucket名称,此处示例填写osstestforsd;地域请从杭州,上海,北京,乌兰察布这四个Region选择,此处选择华东2(上海);签署转存的授权协议;最后单击确认转存

image.png

  1. 确认转存后几秒钟,将会弹出文件框提示转存成功,记录对象存储OSS Bucket名称为 osstestforsd

  1. 前往对象存储OSS控制台,确认您刚才转存的模型文件。在Bucket列表找并单击osstestforsd

进入Bucket的文件管理-文件列表处,然后逐个单击文件夹,进入/data-oss/models的目录,可以看到模型文件已经转存进来。


步骤二:将OSS模型库挂载到PAI-EAS并部署模型

您已经将SD模型库的Stable Diffusion模型文件转存到了自己的对象存储OSS中,该存储空间中的模型可以被用于SDWebUI,另外也可以将未来训练和推理的结果保存到该OSS Bucket目录中。您可以通过如下文件挂载方式来实现。

  1. 前往PAI控制台。开通机器学习PAI并创建默认工作空间。其中关键参数配置如下,更多详细内容,请参见开通并创建默认工作空间。如果您后续使用RAM用户来部署模型,您需要将RAM用户添加为默认工作空间的成员,并配置管理员角色,详情请参见管理成员;同时,需要为RAM用户授予PAI-EAS的管理权限,详情请参见云产品依赖与授权:EAS
  • 本教程地域选择:华东2(上海)
  • 组合开通:本教程无需使用其他产品,去除勾选其他产品即可。
  • 服务角色授权:单击去授权,完成服务角色授权。

  1. 登录PAI控制台,进入PAI-EAS控制台。

   a.在左侧导航栏,单击工作空间列表

     

b.在工作空间列表页面,找到默认工作空间,单击默认工作空间名称。

c.在左侧导航栏,选择模型部署>模型在线服务(EAS),进入PAI EAS模型在线服务页面。

说明:如果界面弹出一键授权对话框,单击授权即可。

  1. 登录PAI控制台,进入在PAI EAS模型在线服务页面,单击部署服务

  1. 部署服务页面,单击新建服务,在模型服务信息配置以下关键参数,其他参数保持默认即可。
  • 服务名称:自定义一个服务名称,本教程示例为sdwebui_test
  • 部署方式:本次选择镜像部署AI-WEB应用
  • 镜像选择:在PAI平台镜像列表中选择stable-diffusion-webui;镜像版本选择3.2说明:由于版本迭代迅速,部署时镜像版本选择最高版本即可。
  • 勾选并同意PAI服务专用协议

  1. 在模型服务信息区域,配置以下参数。
  1. 单击填写模型配置,进行模型配置
  1. 模型配置选择OSS挂载,将OSS路径配置为步骤1中创建的OSS Bucket路径。例如:oss://osstestforsd/data-oss/
  2. 挂载路径:将您配置的OSS文件目录挂载到镜像的/code/stable-diffusion-webui路径下。例如配置为:/code/stable-diffusion-webui/data-oss
  3. 是否只读:开关关闭。
  1. 运行命令中增加--data-dir 挂载目录,其中挂载目录需要与模型配置挂载路径的最后一级目录一致。例如:./webui.sh --listen --port 8000 --skip-version-check --no-hashing --no-download-sd-model --skip-install --api --filebrowser --data-dir data-oss

  1. 在资源部署信息区域,配置如下参数
  1. 资源种类:选择公共资源组
  2. 资源配置方法:选择常规资源配置
  3. 资源配置选择:
  1. 如果您使用免费试用资源,本教程实例规格选择试用活动页签的ecs.gn6i-c8g1.2xlarge.limit说明:阿里云免费试用提供的机型包括以下三种机型,仅选择试用活动页签下的这三种机型来部署服务产生的费用,才能使用抵扣包抵扣。 ecs.g6.xlarge.limit ecs.gn6i-c8g1.2xlarge.limit ecs.gn7i-c8g1.2xlarge.limit
  2. 如果您使用个人账户资源,本教程实例规格选择试用活动页签的ecs.gn6i-c8g1.2xlarge.limit。
  1. 额外系统盘:本教程不需要额外系统盘。


  1. 部署服务页面下方,单击部署。

  1. 部署服务对话框中,单击确定

  1. PAI EAS模型在线服务页面,等待1~3分钟,当模型状态创建中变为运行中,表明服务已成功部署,您可继续后续的模型推理操作。


步骤三:启动WebUI进行模型切换与推理

  1. PAI EAS模型在线服务页面,找到您创建的服务,单击其服务方式列下的查看Web应用

  1. 启动WebUI。在WebUI页面Stable Diffusion模型(ckpt)下拉列表中切换指定模型,进行模型推理验证。此处选择名称为dreamshaper_7的模型,选择完成后,切换模型时间预计需要几十秒,请耐心等待。

切换完成后,在文生图页面输入如下信息:

  • 提示词:photo of the warrior Aragorn from Lord of the Rings, film grain
  • 反向提示词:BadDream, (UnrealisticDream:1.2)
  • 采样方法(Sampler):DPM++ SDE Karras
  • 迭代步数(steps):30
  • 相关性(CFG scale):4
  • 随机种(seed):82742

相关文章
|
5月前
|
机器学习/深度学习 数据采集 自然语言处理
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC-Transformer 模型
8月更文挑战第6天
|
5月前
|
自然语言处理
AIGC使用问题之GPT-1如何优化目标函数,如何做模型微调
AIGC使用问题之GPT-1如何优化目标函数,如何做模型微调
|
5月前
|
机器学习/深度学习 运维 算法
「AIGC算法」K-means聚类模型
**K-means聚类模型概览:** - 是无监督学习算法,用于数据集自动分组。 - 算法步骤:初始化质心,分配数据点,更新质心,迭代直至收敛。 - 关键点包括K的选择、初始化方法、收敛性和性能度量。 - 优点是简单快速,适合大样本,但对初始点敏感,需预设K值,且仅适于球形簇。 - 应用场景包括图像分割、市场分析、异常检测等。 - 示例展示了使用scikit-learn对Iris数据集和自定义CSV数据进行聚类。
76 0
「AIGC算法」K-means聚类模型
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC领域中的模型
7月更文挑战第6天
|
6月前
|
人工智能 自然语言处理 机器人
【AIGC】大型语言模型在人工智能规划领域模型生成中的探索
【AIGC】大型语言模型在人工智能规划领域模型生成中的探索
111 6
|
5月前
|
机器学习/深度学习 人工智能 大数据
AIGC使用问题之多模态大模型如何升级AIGC的内容创作能力
AIGC使用问题之多模态大模型如何升级AIGC的内容创作能力
|
5月前
|
人工智能
AIGC使用问题之视觉大模型如何提高AIGC的感知能力
AIGC使用问题之视觉大模型如何提高AIGC的感知能力
|
6月前
|
人工智能 JavaScript 测试技术
《AIGC+软件开发新范式》--10.阿里云参编业内首个代码大模型标准,通义灵码获 2023 AI4SE “银弹” 案例
在AI 热度持续上升的当下,阿里云推出AI智能编码助手—通义灵码。通义灵码是一款基于阿里云通义代码大模型打造的智能编码助手,基于海量优秀开源代数据集和编程教科书训练,为开发者带来高效、流畅的编码体验。
262 2
|
6月前
|
SQL 人工智能 Devops
《AIGC+软件开发新范式》--01.当「软件研发」遇上 AI 大模型(1)
在AI 热度持续上升的当下,阿里云推出AI智能编码助手—通义灵码。通义灵码是一款基于阿里云通义代码大模型打造的智能编码助手,基于海量优秀开源代数据集和编程教科书训练,为开发者带来高效、流畅的编码体验。
209 0