三自由度PUMA机器人非线性控制研究(Matlab代码、Simulink仿真实现)

简介: 三自由度PUMA机器人非线性控制研究(Matlab代码、Simulink仿真实现)

💥1 概述

针对三自由度PUMA560机器人的控制问题,可以使用三种不同的非线性控制算法:计算扭矩控制、滑模控制和反步控制。下面简要介绍这些算法的基本原理:


1. 计算扭矩控制(Computed Torque Control):计算扭矩控制是一种基于模型的控制方法,通过反馈线性化将非线性系统线性化,然后设计一个线性控制器来跟踪期望轨迹。控制器根据系统模型计算所需的关节扭矩,以达到期望的位置、速度和加速度跟踪性能。


2. 滑模控制(Sliding Mode Control):滑模控制是一种基于滑模面的控制方法,通过引入一个滑模面来实现对系统状态的切换控制。控制器通过调节滑模面的斜率和截距,将系统状态强制切换到滑模面上,并保持在滑模面上实现期望的状态跟踪。


3. 反步控制(Backstepping Control):反步控制是一种基于递归迭代的控制方法,通过分层设计控制器,逐步消除系统非线性和耦合项。控制器按照系统的状态误差和导数误差进行递归迭代调整,从而实现期望的状态跟踪和稳定性。


对于三自由度PUMA560机器人的控制,可以将上述控制算法分别应用于每个关节或系统状态,以实现对机器人的位置、速度和力矩的控制。


值得注意的是,每种控制算法都有其优点和局限性,选择适合具体应用场景的控制算法需要综合考虑系统的动力学特性、控制要求以及对算法复杂度的要求。进一步的研究和实验可以帮助评估和优化控制算法的性能和鲁棒性。


使用三种不同的非线性控制算法来控制三自由度PUMA560机器人。这些算法是:

计算扭矩控制、滑动模式和反步控制。


为了提供基于动态模型的机械手控制系统COSMOS,并改进了动态模型,拆卸了PUMA 560臂;测量了各个环节的惯性特性;并推导了一个包含所有非零测量参数的显式模型。PUMA 臂的显式模型是通过由几个用于简化的启发式规则组成的推导程序获得的。简化模型,从具有 1% 显著性准则的完整显式模型缩写而来,可以通过 805 次计算进行评估,是递归牛顿-欧拉方法所需数量的五分之一。列出了用于推导模型的过程;给出了测量的惯性参数,并将模型包含在附录中。PUMA 560 臂的显式动力学模型和惯性参数 |IEEE会议出版物 |IEEE Xplore


📚2 运行结果

部分代码:

switch flag
  %%%%%%%%%%%%%%%%%%
  % Initialization %
  %%%%%%%%%%%%%%%%%%
  case 0
    [sys,x0,str,ts] = mdlInitializeSizes(ax,varargin{:});
    warning off;
    SetBlockCallbacks(gcbh);
    warning on;
  %%%%%%%%%%
  % Update %
  %%%%%%%%%%
  case 2
    sys = mdlUpdate(t,x,u,flag,ax,varargin{:});
  %%%%%%%%%
  % Start %
  %%%%%%%%%
  case 'Start'
    LocalBlockStartFcn
  %%%%%%%%
  % Stop %
  %%%%%%%%
  case 'Stop'
    LocalBlockStopFcn
  %%%%%%%%%%%%%%
  % NameChange %
  %%%%%%%%%%%%%%
  case 'NameChange'
    LocalBlockNameChangeFcn
  %%%%%%%%%%%%%%%%%%%%%%%%
  % CopyBlock, LoadBlock %
  %%%%%%%%%%%%%%%%%%%%%%%%
  case { 'CopyBlock', 'LoadBlock' }
    LocalBlockLoadCopyFcn
  %%%%%%%%%%%%%%%
  % DeleteBlock %
  %%%%%%%%%%%%%%%
  case 'DeleteBlock'
    LocalBlockDeleteFcn
  %%%%%%%%%%%%%%%%
  % DeleteFigure %
  %%%%%%%%%%%%%%%%
  case 'DeleteFigure'
    LocalFigureDeleteFcn
  %%%%%%%%%%%%%%%%
  % Unused flags %
  %%%%%%%%%%%%%%%%
  case { 3, 9 }
    sys = [];
  %%%%%%%%%%%%%%%%%%%%
  % Unexpected flags %
  %%%%%%%%%%%%%%%%%%%%
  otherwise
    if ischar(flag),
      errmsg=sprintf('Unhandled flag: ''%s''', flag);
    else
      errmsg=sprintf('Unhandled flag: %d', flag);
    end
    error(errmsg);
end
% end sfunxy

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]B. Armstrong, O. Khatib and J. Burdick, "The explicit dynamic model and inertial parameters of the PUMA 560 arm," Proceedings. 1986 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 1986, pp. 510-518, doi: 10.1109/ROBOT.1986.1087644.


🌈4 Matlab代码、Simulink仿真实现

相关文章
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于QLearning强化学习的机器人避障和路径规划matlab仿真
本文介绍了使用MATLAB 2022a进行强化学习算法仿真的效果,并详细阐述了Q-Learning原理及其在机器人避障和路径规划中的应用。通过Q-Learning算法,机器人能在未知环境中学习到达目标的最短路径并避开障碍物。仿真结果展示了算法的有效性,核心程序实现了Q表的更新和状态的可视化。未来研究可扩展至更复杂环境和高效算法。![](https://ucc.alicdn.com/pic/developer-ecology/nymobwrkkdwks_d3b95a2f4fd2492381e1742e5658c0bc.gif)等图像展示了具体仿真过程。
67 0
|
1月前
|
机器学习/深度学习 传感器 安全
基于模糊神经网络的移动机器人路径规划matlab仿真
该程序利用模糊神经网络实现移动机器人的路径规划,能在含5至7个静态未知障碍物的环境中随机导航。机器人配备传感器检测前方及其两侧45度方向上的障碍物距离,并根据这些数据调整其速度和方向。MATLAB2022a版本下,通过模糊逻辑处理传感器信息,生成合理的路径,确保机器人安全到达目标位置。以下是该程序在MATLAB2022a下的测试结果展示。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
198 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
128 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
机器学习/深度学习 算法 机器人
【2023年第十三届APMCM亚太地区大学生数学建模竞赛】A题 水果采摘机器人的图像识别 Python代码解析
本文介绍了2023年第十三届APMCM亚太地区大学生数学建模竞赛A题的Python代码实现,详细阐述了水果采摘机器人图像识别问题的分析与解决策略,包括图像特征提取、数学模型建立、目标检测算法使用,以及苹果数量统计、位置估计、成熟度评估和质量估计等任务的编程实践。
84 0
【2023年第十三届APMCM亚太地区大学生数学建模竞赛】A题 水果采摘机器人的图像识别 Python代码解析
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
90 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
3月前
|
算法 5G vr&ar
基于1bitDAC的MU-MIMO的非线性预编码算法matlab性能仿真
在现代无线通信中,1-bit DAC的非线性预编码技术应用于MU-MIMO系统,旨在降低成本与能耗。本文采用MATLAB 2022a版本,深入探讨此技术,并通过算法运行效果图展示性能。核心代码支持中文注释与操作指导。理论部分包括信号量化、符号最大化准则,并对比ZF、WF、MRT及ADMM等算法,揭示了在1-bit量化条件下如何优化预编码以提升系统性能。
|
3月前
【光波电子学】MATLAB绘制光纤中线性偏振模式LP之单模光纤的电场分布(光斑)
该文章介绍了如何使用MATLAB绘制单模光纤中线性偏振模式LP₀₁的电场分布,并提供了相关的数学公式和参数用于模拟光纤中的光斑分布。
39 0
|
6月前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度

热门文章

最新文章