三自由度PUMA机器人非线性控制研究(Matlab代码、Simulink仿真实现)

简介: 三自由度PUMA机器人非线性控制研究(Matlab代码、Simulink仿真实现)

💥1 概述

针对三自由度PUMA560机器人的控制问题,可以使用三种不同的非线性控制算法:计算扭矩控制、滑模控制和反步控制。下面简要介绍这些算法的基本原理:


1. 计算扭矩控制(Computed Torque Control):计算扭矩控制是一种基于模型的控制方法,通过反馈线性化将非线性系统线性化,然后设计一个线性控制器来跟踪期望轨迹。控制器根据系统模型计算所需的关节扭矩,以达到期望的位置、速度和加速度跟踪性能。


2. 滑模控制(Sliding Mode Control):滑模控制是一种基于滑模面的控制方法,通过引入一个滑模面来实现对系统状态的切换控制。控制器通过调节滑模面的斜率和截距,将系统状态强制切换到滑模面上,并保持在滑模面上实现期望的状态跟踪。


3. 反步控制(Backstepping Control):反步控制是一种基于递归迭代的控制方法,通过分层设计控制器,逐步消除系统非线性和耦合项。控制器按照系统的状态误差和导数误差进行递归迭代调整,从而实现期望的状态跟踪和稳定性。


对于三自由度PUMA560机器人的控制,可以将上述控制算法分别应用于每个关节或系统状态,以实现对机器人的位置、速度和力矩的控制。


值得注意的是,每种控制算法都有其优点和局限性,选择适合具体应用场景的控制算法需要综合考虑系统的动力学特性、控制要求以及对算法复杂度的要求。进一步的研究和实验可以帮助评估和优化控制算法的性能和鲁棒性。


使用三种不同的非线性控制算法来控制三自由度PUMA560机器人。这些算法是:

计算扭矩控制、滑动模式和反步控制。


为了提供基于动态模型的机械手控制系统COSMOS,并改进了动态模型,拆卸了PUMA 560臂;测量了各个环节的惯性特性;并推导了一个包含所有非零测量参数的显式模型。PUMA 臂的显式模型是通过由几个用于简化的启发式规则组成的推导程序获得的。简化模型,从具有 1% 显著性准则的完整显式模型缩写而来,可以通过 805 次计算进行评估,是递归牛顿-欧拉方法所需数量的五分之一。列出了用于推导模型的过程;给出了测量的惯性参数,并将模型包含在附录中。PUMA 560 臂的显式动力学模型和惯性参数 |IEEE会议出版物 |IEEE Xplore


📚2 运行结果

部分代码:

switch flag
  %%%%%%%%%%%%%%%%%%
  % Initialization %
  %%%%%%%%%%%%%%%%%%
  case 0
    [sys,x0,str,ts] = mdlInitializeSizes(ax,varargin{:});
    warning off;
    SetBlockCallbacks(gcbh);
    warning on;
  %%%%%%%%%%
  % Update %
  %%%%%%%%%%
  case 2
    sys = mdlUpdate(t,x,u,flag,ax,varargin{:});
  %%%%%%%%%
  % Start %
  %%%%%%%%%
  case 'Start'
    LocalBlockStartFcn
  %%%%%%%%
  % Stop %
  %%%%%%%%
  case 'Stop'
    LocalBlockStopFcn
  %%%%%%%%%%%%%%
  % NameChange %
  %%%%%%%%%%%%%%
  case 'NameChange'
    LocalBlockNameChangeFcn
  %%%%%%%%%%%%%%%%%%%%%%%%
  % CopyBlock, LoadBlock %
  %%%%%%%%%%%%%%%%%%%%%%%%
  case { 'CopyBlock', 'LoadBlock' }
    LocalBlockLoadCopyFcn
  %%%%%%%%%%%%%%%
  % DeleteBlock %
  %%%%%%%%%%%%%%%
  case 'DeleteBlock'
    LocalBlockDeleteFcn
  %%%%%%%%%%%%%%%%
  % DeleteFigure %
  %%%%%%%%%%%%%%%%
  case 'DeleteFigure'
    LocalFigureDeleteFcn
  %%%%%%%%%%%%%%%%
  % Unused flags %
  %%%%%%%%%%%%%%%%
  case { 3, 9 }
    sys = [];
  %%%%%%%%%%%%%%%%%%%%
  % Unexpected flags %
  %%%%%%%%%%%%%%%%%%%%
  otherwise
    if ischar(flag),
      errmsg=sprintf('Unhandled flag: ''%s''', flag);
    else
      errmsg=sprintf('Unhandled flag: %d', flag);
    end
    error(errmsg);
end
% end sfunxy

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]B. Armstrong, O. Khatib and J. Burdick, "The explicit dynamic model and inertial parameters of the PUMA 560 arm," Proceedings. 1986 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 1986, pp. 510-518, doi: 10.1109/ROBOT.1986.1087644.


🌈4 Matlab代码、Simulink仿真实现

相关文章
|
6月前
|
机器学习/深度学习 算法 机器人
基于QLearning强化学习的较大规模栅格地图机器人路径规划matlab仿真
本项目基于MATLAB 2022a,通过强化学习算法实现机器人在栅格地图中的路径规划。仿真结果显示了机器人从初始位置到目标位置的行驶动作序列(如“下下下下右右...”),并生成了详细的路径图。智能体通过Q-Learning算法与环境交互,根据奖励信号优化行为策略,最终学会最优路径。核心程序实现了效用值排序、状态转换及动作选择,并输出机器人行驶的动作序列和路径可视化图。
433 85
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于Qlearning强化学习的机器人迷宫路线搜索算法matlab仿真
本内容展示了基于Q-learning算法的机器人迷宫路径搜索仿真及其实现过程。通过Matlab2022a进行仿真,结果以图形形式呈现,无水印(附图1-4)。算法理论部分介绍了Q-learning的核心概念,包括智能体、环境、状态、动作和奖励,以及Q表的构建与更新方法。具体实现中,将迷宫抽象为二维网格世界,定义起点和终点,利用Q-learning训练机器人找到最优路径。核心程序代码实现了多轮训练、累计奖励值与Q值的可视化,并展示了机器人从起点到终点的路径规划过程。
72 0
|
4月前
|
机器学习/深度学习 算法 机器人
基于Qlearning强化学习的机器人路线规划matlab仿真
本内容展示了基于Q-learning强化学习算法的路径规划研究,包括MATLAB仿真效果、理论知识及核心代码。通过训练与测试,智能体在离散化网格环境中学习最优策略以规避障碍并到达目标。代码实现中采用epsilon-贪婪策略平衡探索与利用,并针对紧急情况设计特殊动作逻辑(如后退)。最终,Q-table收敛后可生成从起点到终点的最优路径,为机器人导航提供有效解决方案。
174 20
|
4月前
|
机器人 数据安全/隐私保护
基于模糊PID控制器的puma560机器人控制系统的simulink建模与仿真
本课题研究基于模糊PID控制器的PUMA 560机器人控制系统建模与仿真,对比传统PID控制器性能。通过Simulink实现系统建模,分析两种控制器的误差表现。模糊PID结合了PID的线性控制优势与模糊逻辑的灵活性,提升动态性能和抗干扰能力。以PUMA 560机器人为例,其运动学和动力学模型为基础,设计针对各关节的模糊PID控制器,包括模糊化、规则制定、推理及去模糊化等步骤,最终实现更优的控制效果。
|
6月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
248 68
|
5月前
|
传感器 人工智能 机器人
【01】人形机器人研究试验-被有些网友痛骂“工业垃圾”“人工智障”上春晚的人形AI机器人-宇树科技机器人到底怎么样??-本系列优雅草卓伊凡亲自尝试下人形机器人的制造-从0开始学习并且制作机器人-可以跟随卓伊凡
【01】人形机器人研究试验-被有些网友痛骂“工业垃圾”“人工智障”上春晚的人形AI机器人-宇树科技机器人到底怎么样??-本系列优雅草卓伊凡亲自尝试下人形机器人的制造-从0开始学习并且制作机器人-可以跟随卓伊凡
239 1
【01】人形机器人研究试验-被有些网友痛骂“工业垃圾”“人工智障”上春晚的人形AI机器人-宇树科技机器人到底怎么样??-本系列优雅草卓伊凡亲自尝试下人形机器人的制造-从0开始学习并且制作机器人-可以跟随卓伊凡
|
5月前
|
机器学习/深度学习 人工智能 算法
ToddlerBot:告别百万经费!6000刀就能造人形机器人,斯坦福开源全套方案普及机器人研究
ToddlerBot 是斯坦福大学推出的低成本开源人形机器人平台,支持强化学习、模仿学习和零样本模拟到现实转移,适用于运动操作研究和多场景应用。
353 3
ToddlerBot:告别百万经费!6000刀就能造人形机器人,斯坦福开源全套方案普及机器人研究
|
4月前
|
算法 机器人 数据安全/隐私保护
四自由度SCARA机器人的运动学和动力学matlab建模与仿真
本课题深入研究SCARA机器人系统,提出其动力学与运动学模型,并基于MATLAB Robotics Toolbox建立四自由度SCARA机器人仿真对象。通过理论结合仿真实验,实现了运动学正解、逆解及轨迹规划等功能,完成系统实验和算法验证。SCARA机器人以其平面关节结构实现快速定位与装配,在自动生产线中广泛应用,尤其在电子和汽车行业表现优异。使用D-H参数法进行结构建模,推导末端执行器的位姿,建立了机器人的运动学方程。
|
4月前
|
机器人 数据安全/隐私保护
基于PID控制器的六自由度串联机器人控制系统的simulink建模与仿真
本课题基于MATLAB2022a的Simulink环境,对六自由度串联机器人控制系统进行建模与仿真,采用PID控制器实现关节的位置、速度或力矩控制。PID控制器通过比例、积分、微分三种策略有效减小系统误差,提高响应速度和稳定性。仿真结果显示系统运行良好,无水印。尽管PID控制简单实用,但在复杂动力学环境下,常结合其他控制策略以增强鲁棒性。
|
7月前
|
传感器 人工智能 自然语言处理
RDT:清华开源全球最大的双臂机器人操作任务扩散基础模型、代码与训练集,基于模仿能力机器人能够自主完成复杂任务
RDT(Robotics Diffusion Transformer)是由清华大学AI研究院TSAIL团队推出的全球最大的双臂机器人操作任务扩散基础模型。RDT具备十亿参数量,能够在无需人类操控的情况下自主完成复杂任务,如调酒和遛狗。
457 22
RDT:清华开源全球最大的双臂机器人操作任务扩散基础模型、代码与训练集,基于模仿能力机器人能够自主完成复杂任务

热门文章

最新文章