三自由度PUMA机器人非线性控制研究(Matlab代码、Simulink仿真实现)

简介: 三自由度PUMA机器人非线性控制研究(Matlab代码、Simulink仿真实现)

💥1 概述

针对三自由度PUMA560机器人的控制问题,可以使用三种不同的非线性控制算法:计算扭矩控制、滑模控制和反步控制。下面简要介绍这些算法的基本原理:


1. 计算扭矩控制(Computed Torque Control):计算扭矩控制是一种基于模型的控制方法,通过反馈线性化将非线性系统线性化,然后设计一个线性控制器来跟踪期望轨迹。控制器根据系统模型计算所需的关节扭矩,以达到期望的位置、速度和加速度跟踪性能。


2. 滑模控制(Sliding Mode Control):滑模控制是一种基于滑模面的控制方法,通过引入一个滑模面来实现对系统状态的切换控制。控制器通过调节滑模面的斜率和截距,将系统状态强制切换到滑模面上,并保持在滑模面上实现期望的状态跟踪。


3. 反步控制(Backstepping Control):反步控制是一种基于递归迭代的控制方法,通过分层设计控制器,逐步消除系统非线性和耦合项。控制器按照系统的状态误差和导数误差进行递归迭代调整,从而实现期望的状态跟踪和稳定性。


对于三自由度PUMA560机器人的控制,可以将上述控制算法分别应用于每个关节或系统状态,以实现对机器人的位置、速度和力矩的控制。


值得注意的是,每种控制算法都有其优点和局限性,选择适合具体应用场景的控制算法需要综合考虑系统的动力学特性、控制要求以及对算法复杂度的要求。进一步的研究和实验可以帮助评估和优化控制算法的性能和鲁棒性。


使用三种不同的非线性控制算法来控制三自由度PUMA560机器人。这些算法是:

计算扭矩控制、滑动模式和反步控制。


为了提供基于动态模型的机械手控制系统COSMOS,并改进了动态模型,拆卸了PUMA 560臂;测量了各个环节的惯性特性;并推导了一个包含所有非零测量参数的显式模型。PUMA 臂的显式模型是通过由几个用于简化的启发式规则组成的推导程序获得的。简化模型,从具有 1% 显著性准则的完整显式模型缩写而来,可以通过 805 次计算进行评估,是递归牛顿-欧拉方法所需数量的五分之一。列出了用于推导模型的过程;给出了测量的惯性参数,并将模型包含在附录中。PUMA 560 臂的显式动力学模型和惯性参数 |IEEE会议出版物 |IEEE Xplore


📚2 运行结果

部分代码:

switch flag
  %%%%%%%%%%%%%%%%%%
  % Initialization %
  %%%%%%%%%%%%%%%%%%
  case 0
    [sys,x0,str,ts] = mdlInitializeSizes(ax,varargin{:});
    warning off;
    SetBlockCallbacks(gcbh);
    warning on;
  %%%%%%%%%%
  % Update %
  %%%%%%%%%%
  case 2
    sys = mdlUpdate(t,x,u,flag,ax,varargin{:});
  %%%%%%%%%
  % Start %
  %%%%%%%%%
  case 'Start'
    LocalBlockStartFcn
  %%%%%%%%
  % Stop %
  %%%%%%%%
  case 'Stop'
    LocalBlockStopFcn
  %%%%%%%%%%%%%%
  % NameChange %
  %%%%%%%%%%%%%%
  case 'NameChange'
    LocalBlockNameChangeFcn
  %%%%%%%%%%%%%%%%%%%%%%%%
  % CopyBlock, LoadBlock %
  %%%%%%%%%%%%%%%%%%%%%%%%
  case { 'CopyBlock', 'LoadBlock' }
    LocalBlockLoadCopyFcn
  %%%%%%%%%%%%%%%
  % DeleteBlock %
  %%%%%%%%%%%%%%%
  case 'DeleteBlock'
    LocalBlockDeleteFcn
  %%%%%%%%%%%%%%%%
  % DeleteFigure %
  %%%%%%%%%%%%%%%%
  case 'DeleteFigure'
    LocalFigureDeleteFcn
  %%%%%%%%%%%%%%%%
  % Unused flags %
  %%%%%%%%%%%%%%%%
  case { 3, 9 }
    sys = [];
  %%%%%%%%%%%%%%%%%%%%
  % Unexpected flags %
  %%%%%%%%%%%%%%%%%%%%
  otherwise
    if ischar(flag),
      errmsg=sprintf('Unhandled flag: ''%s''', flag);
    else
      errmsg=sprintf('Unhandled flag: %d', flag);
    end
    error(errmsg);
end
% end sfunxy

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]B. Armstrong, O. Khatib and J. Burdick, "The explicit dynamic model and inertial parameters of the PUMA 560 arm," Proceedings. 1986 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 1986, pp. 510-518, doi: 10.1109/ROBOT.1986.1087644.


🌈4 Matlab代码、Simulink仿真实现

相关文章
|
2月前
|
数据可视化 机器人 Python
实例8:机器人的空间描述和变换仿真
本文是关于机器人空间描述和变换的仿真实验教程,通过Python编程和可视化学习,介绍了刚体的平动和转动、位姿描述、坐标变换等基础知识,并提供了具体的实验步骤和代码实现。实验目的是让读者通过编程实践,了解和掌握空间变换的数学原理和操作方法。
32 2
实例8:机器人的空间描述和变换仿真
|
2月前
|
传感器 人工智能 文字识别
OrangePi AIpro 机器人仿真与人工智能应用测评(下)
OrangePi AIpro 机器人仿真与人工智能应用测评(下)
63 11
|
2月前
|
人工智能 Ubuntu 机器人
OrangePi AIpro 机器人仿真与人工智能应用测评(上)
OrangePi AIpro 机器人仿真与人工智能应用测评
61 8
|
2月前
|
存储
MATLAB - 使用 MPC Designer 线性化 Simulink 模型
MATLAB - 使用 MPC Designer 线性化 Simulink 模型
37 1
|
2月前
|
机器学习/深度学习 算法 机器人
【2023年第十三届APMCM亚太地区大学生数学建模竞赛】A题 水果采摘机器人的图像识别 Python代码解析
本文介绍了2023年第十三届APMCM亚太地区大学生数学建模竞赛A题的Python代码实现,详细阐述了水果采摘机器人图像识别问题的分析与解决策略,包括图像特征提取、数学模型建立、目标检测算法使用,以及苹果数量统计、位置估计、成熟度评估和质量估计等任务的编程实践。
49 0
【2023年第十三届APMCM亚太地区大学生数学建模竞赛】A题 水果采摘机器人的图像识别 Python代码解析
|
2月前
|
XML 传感器 数据可视化
09 机器人仿真Gazebo实例
本文详细介绍了在ROS(机器人操作系统)中使用Gazebo进行机器人仿真的流程,包括安装Gazebo、创建URDF模型、使用xacro优化URDF、配置ROS_control以及为模型添加Gazebo属性和控制器插件,并提供了相应的示例代码。
40 0
|
4月前
|
机器学习/深度学习 传感器 算法
强化学习(RL)在机器人领域的应用,尤其是结合ROS(Robot Operating System)和Gazebo(机器人仿真环境)
强化学习(RL)在机器人领域的应用,尤其是结合ROS(Robot Operating System)和Gazebo(机器人仿真环境)
156 2
|
5月前
|
数据可视化 算法
MATLAB Simulink 交交变流电路性能研究
MATLAB Simulink 交交变流电路性能研究
65 2
|
5月前
|
数据可视化 算法
MATLAB Simulink 直流斩波电路性能研究
MATLAB Simulink 直流斩波电路性能研究
60 1
|
5月前
|
数据可视化 算法
MATLAB Simulink 逆变电路性能研究
MATLAB Simulink 逆变电路性能研究
41 1

热门文章

最新文章

下一篇
无影云桌面