【能量管理系统( EMS )】基于粒子群算法对光伏、蓄电池等分布式能源DG进行规模优化调度研究(Matlab代码实现)

简介: 【能量管理系统( EMS )】基于粒子群算法对光伏、蓄电池等分布式能源DG进行规模优化调度研究(Matlab代码实现)

💥1 概述

能量管理系统 (Energy Management System, EMS) 是一种用于优化调度分布式能源 (Distributed Generation, DG) 的技术。其中,光伏和蓄电池是常见的分布式能源形式。该系统利用粒子群算法进行规模优化调度,以实现对DG的有效管理和利用。


在该研究中,光伏和蓄电池作为分布式能源设备,被整合到能量管理系统中。粒子群算法作为一种优化算法应用于系统中,用于在考虑系统约束条件的情况下,寻找最佳的光伏和蓄电池的规模和调度策略。


研究的目标是通过对光伏和蓄电池的规模进行优化,使得系统的能效最大化或运行成本最小化。同时,通过合理调度光伏发电和蓄电池充放电,实现对电网负荷的平衡和优化。


通过粒子群算法的优化调度,能量管理系统可以更好地协调光伏和蓄电池等分布式能源设备的运行,实现电力系统的高效、稳定和可靠运行。此外,该研究还可以为制定分布式能源的规模和调度策略提供参考和指导,促进可再生能源的大规模应用和智能电网的发展。


📚2 运行结果

部分代码:

%% Main PSO
for n_ite=1:set.Niteration
    for n_par=1:set.Nparticle
        [LPSP,COE]=EMS(particle(n_par).position(1),...
            particle(n_par).position(2),...
            particle(n_par).position(3));
        %% Calculate Mark
        Mark=set.weight_LPSP*abs(LPSP-set.desired_LPSP)+...
            set.weight_COE*COE/set.Normal_COE;
        %% Best Particle
        if isempty(particle(n_par).best_Mark) || particle(n_par).best_Mark>Mark
            particle(n_par).best_position=particle(n_par).position;
            particle(n_par).best_LPSP=LPSP;
            particle(n_par).best_COE=COE;
            particle(n_par).best_Mark=Mark;
        end
        %% Best Global
        if (n_ite==1 && n_par==1) || best_global.Mark>Mark
            best_global.position=particle(n_par).position;
            best_global.LPSP=LPSP;
            best_global.COE=COE;
            best_global.Mark=Mark;
        end
        log_global(n_ite)=best_global;
        %% Velocity and New Position
        particle(n_par).velocity=set.w*particle(n_par).velocity...
            +set.c1*(particle(n_par).best_position-particle(n_par).position)...
            +set.c2*(best_global.position-particle(n_par).position);
        particle(n_par).position=particle(n_par).position...
            +particle(n_par).velocity;
        %% Round Position
        particle(n_par).position(1)=round(particle(n_par).position(1));
        particle(n_par).position(2)=round(particle(n_par).position(2));
        particle(n_par).position(3)=round(particle(n_par).position(3));
        %% Limit Position
        if particle(n_par).position(1)<set.Npv_min
            particle(n_par).position(1)=set.Npv_min;
        end
        if particle(n_par).position(2)<set.Nbat_min
            particle(n_par).position(2)=set.Nbat_min;
        end
        if particle(n_par).position(3)<set.Ndg_min
            particle(n_par).position(3)=set.Ndg_min;
        end
        if particle(n_par).position(1)>set.Npv_max
            particle(n_par).position(1)=set.Npv_max;
        end
        if particle(n_par).position(2)>set.Nbat_max
            particle(n_par).position(2)=set.Nbat_max;
        end
        if particle(n_par).position(3)>set.Ndg_max
            particle(n_par).position(3)=set.Ndg_max;
        end
    end
end
clear LPSP COE Mark n_ite n_par
%% Show Result
for n_ite=1:set.Niteration
    LPSP(n_ite)=log_global(n_ite).LPSP;
    COE(n_ite)=log_global(n_ite).COE;
end
subplot(2,1,1);
plot(LPSP);
grid on;
xlabel('n-th Iteration')
ylabel('Loss of Load Probability, LPSP');
subplot(2,1,2);
plot(COE);
grid on;
xlabel('n-th Iteration')
ylabel('Cost of Energy, COE ($)');
tpro=toc;
fprintf('The optimum system size is:\n   Npv=%d\n   Nbat=%d\n   Ndg=%d\nwith the LPSP = %.3f%% and COE = $%.2f\nCompute in %.2f s\n',...
    best_global.position,best_global.LPSP*100,best_global.COE,tpro);
beep;

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]张翀,张嘉楠,杨伟涛等.光储充多站合一能量管理系统设计[J].电气技术与经济,2023(03):125-128.


[2]杨睿陌. 基于混合MPPT算法的光伏能量管理系统设计[D].哈尔滨工业大学,2022.DOI:10.27061/d.cnki.ghgdu.2022.001839.


🌈4 Matlab代码实现

相关文章
|
10天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
15天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
1月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
3月前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
111 2
基于Redis的高可用分布式锁——RedLock
|
3月前
|
缓存 NoSQL Java
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
这篇文章是关于如何在SpringBoot应用中整合Redis并处理分布式场景下的缓存问题,包括缓存穿透、缓存雪崩和缓存击穿。文章详细讨论了在分布式情况下如何添加分布式锁来解决缓存击穿问题,提供了加锁和解锁的实现过程,并展示了使用JMeter进行压力测试来验证锁机制有效性的方法。
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
|
7天前
|
NoSQL Redis
Redis分布式锁如何实现 ?
Redis分布式锁通过SETNX指令实现,确保仅在键不存在时设置值。此机制用于控制多个线程对共享资源的访问,避免并发冲突。然而,实际应用中需解决死锁、锁超时、归一化、可重入及阻塞等问题,以确保系统的稳定性和可靠性。解决方案包括设置锁超时、引入Watch Dog机制、使用ThreadLocal绑定加解锁操作、实现计数器支持可重入锁以及采用自旋锁思想处理阻塞请求。
41 16
|
1月前
|
缓存 NoSQL Java
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
59 3
大数据-50 Redis 分布式锁 乐观锁 Watch SETNX Lua Redisson分布式锁 Java实现分布式锁
|
1月前
|
NoSQL Redis 数据库
计数器 分布式锁 redis实现
【10月更文挑战第5天】
47 1
|
1月前
|
NoSQL 算法 关系型数据库
Redis分布式锁
【10月更文挑战第1天】分布式锁用于在多进程环境中保护共享资源,防止并发冲突。通常借助外部系统如Redis或Zookeeper实现。通过`SETNX`命令加锁,并设置过期时间防止死锁。为避免误删他人锁,加锁时附带唯一标识,解锁前验证。面对锁提前过期的问题,可使用守护线程自动续期。在Redis集群中,需考虑主从同步延迟导致的锁丢失问题,Redlock算法可提高锁的可靠性。
73 4
|
1月前
|
存储 缓存 NoSQL
大数据-38 Redis 高并发下的分布式缓存 Redis简介 缓存场景 读写模式 旁路模式 穿透模式 缓存模式 基本概念等
大数据-38 Redis 高并发下的分布式缓存 Redis简介 缓存场景 读写模式 旁路模式 穿透模式 缓存模式 基本概念等
61 4