【能量管理系统( EMS )】基于粒子群算法对光伏、蓄电池等分布式能源DG进行规模优化调度研究(Matlab代码实现)

简介: 【能量管理系统( EMS )】基于粒子群算法对光伏、蓄电池等分布式能源DG进行规模优化调度研究(Matlab代码实现)

💥1 概述

能量管理系统 (Energy Management System, EMS) 是一种用于优化调度分布式能源 (Distributed Generation, DG) 的技术。其中,光伏和蓄电池是常见的分布式能源形式。该系统利用粒子群算法进行规模优化调度,以实现对DG的有效管理和利用。


在该研究中,光伏和蓄电池作为分布式能源设备,被整合到能量管理系统中。粒子群算法作为一种优化算法应用于系统中,用于在考虑系统约束条件的情况下,寻找最佳的光伏和蓄电池的规模和调度策略。


研究的目标是通过对光伏和蓄电池的规模进行优化,使得系统的能效最大化或运行成本最小化。同时,通过合理调度光伏发电和蓄电池充放电,实现对电网负荷的平衡和优化。


通过粒子群算法的优化调度,能量管理系统可以更好地协调光伏和蓄电池等分布式能源设备的运行,实现电力系统的高效、稳定和可靠运行。此外,该研究还可以为制定分布式能源的规模和调度策略提供参考和指导,促进可再生能源的大规模应用和智能电网的发展。


📚2 运行结果

部分代码:

%% Main PSO
for n_ite=1:set.Niteration
    for n_par=1:set.Nparticle
        [LPSP,COE]=EMS(particle(n_par).position(1),...
            particle(n_par).position(2),...
            particle(n_par).position(3));
        %% Calculate Mark
        Mark=set.weight_LPSP*abs(LPSP-set.desired_LPSP)+...
            set.weight_COE*COE/set.Normal_COE;
        %% Best Particle
        if isempty(particle(n_par).best_Mark) || particle(n_par).best_Mark>Mark
            particle(n_par).best_position=particle(n_par).position;
            particle(n_par).best_LPSP=LPSP;
            particle(n_par).best_COE=COE;
            particle(n_par).best_Mark=Mark;
        end
        %% Best Global
        if (n_ite==1 && n_par==1) || best_global.Mark>Mark
            best_global.position=particle(n_par).position;
            best_global.LPSP=LPSP;
            best_global.COE=COE;
            best_global.Mark=Mark;
        end
        log_global(n_ite)=best_global;
        %% Velocity and New Position
        particle(n_par).velocity=set.w*particle(n_par).velocity...
            +set.c1*(particle(n_par).best_position-particle(n_par).position)...
            +set.c2*(best_global.position-particle(n_par).position);
        particle(n_par).position=particle(n_par).position...
            +particle(n_par).velocity;
        %% Round Position
        particle(n_par).position(1)=round(particle(n_par).position(1));
        particle(n_par).position(2)=round(particle(n_par).position(2));
        particle(n_par).position(3)=round(particle(n_par).position(3));
        %% Limit Position
        if particle(n_par).position(1)<set.Npv_min
            particle(n_par).position(1)=set.Npv_min;
        end
        if particle(n_par).position(2)<set.Nbat_min
            particle(n_par).position(2)=set.Nbat_min;
        end
        if particle(n_par).position(3)<set.Ndg_min
            particle(n_par).position(3)=set.Ndg_min;
        end
        if particle(n_par).position(1)>set.Npv_max
            particle(n_par).position(1)=set.Npv_max;
        end
        if particle(n_par).position(2)>set.Nbat_max
            particle(n_par).position(2)=set.Nbat_max;
        end
        if particle(n_par).position(3)>set.Ndg_max
            particle(n_par).position(3)=set.Ndg_max;
        end
    end
end
clear LPSP COE Mark n_ite n_par
%% Show Result
for n_ite=1:set.Niteration
    LPSP(n_ite)=log_global(n_ite).LPSP;
    COE(n_ite)=log_global(n_ite).COE;
end
subplot(2,1,1);
plot(LPSP);
grid on;
xlabel('n-th Iteration')
ylabel('Loss of Load Probability, LPSP');
subplot(2,1,2);
plot(COE);
grid on;
xlabel('n-th Iteration')
ylabel('Cost of Energy, COE ($)');
tpro=toc;
fprintf('The optimum system size is:\n   Npv=%d\n   Nbat=%d\n   Ndg=%d\nwith the LPSP = %.3f%% and COE = $%.2f\nCompute in %.2f s\n',...
    best_global.position,best_global.LPSP*100,best_global.COE,tpro);
beep;

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]张翀,张嘉楠,杨伟涛等.光储充多站合一能量管理系统设计[J].电气技术与经济,2023(03):125-128.


[2]杨睿陌. 基于混合MPPT算法的光伏能量管理系统设计[D].哈尔滨工业大学,2022.DOI:10.27061/d.cnki.ghgdu.2022.001839.


🌈4 Matlab代码实现

相关文章
|
4天前
|
数据可视化 算法
MATLAB Simulink 交交变流电路性能研究
MATLAB Simulink 交交变流电路性能研究
9 2
|
4天前
|
数据可视化 算法
MATLAB Simulink 直流斩波电路性能研究
MATLAB Simulink 直流斩波电路性能研究
15 1
|
4天前
|
数据可视化 算法
MATLAB Simulink 逆变电路性能研究
MATLAB Simulink 逆变电路性能研究
10 1
|
4天前
|
NoSQL Java 关系型数据库
【Redis系列笔记】分布式锁
分布式锁:满足分布式系统或集群模式下多进程可见并且互斥的锁。 分布式锁的核心思想就是让大家都使用同一把锁,只要大家使用的是同一把锁,那么我们就能锁住线程,不让线程进行,让程序串行执行,这就是分布式锁的核心思路
131 2
|
4天前
|
NoSQL Java Redis
redis分布式锁
redis分布式锁
|
3天前
|
存储 监控 NoSQL
【Redis】分布式锁及其他常见问题
【Redis】分布式锁及其他常见问题
16 0
|
3天前
|
NoSQL Java Redis
【Redis】Redis实现分布式锁
【Redis】Redis实现分布式锁
7 0
|
4天前
|
监控 NoSQL 算法
探秘Redis分布式锁:实战与注意事项
本文介绍了Redis分区容错中的分布式锁概念,包括利用Watch实现乐观锁和使用setnx防止库存超卖。乐观锁通过Watch命令监控键值变化,在事务中执行修改,若键值被改变则事务失败。Java代码示例展示了具体实现。setnx命令用于库存操作,确保无超卖,通过设置锁并检查库存来更新。文章还讨论了分布式锁存在的问题,如客户端阻塞、时钟漂移和单点故障,并提出了RedLock算法来提高可靠性。Redisson作为生产环境的分布式锁实现,提供了可重入锁、读写锁等高级功能。最后,文章对比了Redis、Zookeeper和etcd的分布式锁特性。
134 16
探秘Redis分布式锁:实战与注意事项
|
4天前
|
NoSQL Java 大数据
介绍redis分布式锁
分布式锁是解决多进程在分布式环境中争夺资源的问题,与本地锁相似但适用于不同进程。以Redis为例,通过`setIfAbsent`实现占锁,加锁同时设置过期时间避免死锁。然而,获取锁与设置过期时间非原子性可能导致并发问题,解决方案是使用`setIfAbsent`的超时参数。此外,释放锁前需验证归属,防止误删他人锁,可借助Lua脚本确保原子性。实际应用中还有锁续期、重试机制等复杂问题,现成解决方案如RedisLockRegistry和Redisson。
|
4天前
|
缓存 NoSQL Java
【亮剑】分布式锁是保证多服务实例同步的关键机制,常用于互斥访问共享资源、控制访问顺序和系统保护,如何使用注解来实现 Redis 分布式锁的功能?
【4月更文挑战第30天】分布式锁是保证多服务实例同步的关键机制,常用于互斥访问共享资源、控制访问顺序和系统保护。基于 Redis 的分布式锁利用 SETNX 或 SET 命令实现,并考虑自动过期、可重入及原子性以确保可靠性。在 Java Spring Boot 中,可通过 `@EnableCaching`、`@Cacheable` 和 `@CacheEvict` 注解轻松实现 Redis 分布式锁功能。

热门文章

最新文章