【能量管理系统( EMS )】基于粒子群算法对光伏、蓄电池等分布式能源DG进行规模优化调度研究(Matlab代码实现)

简介: 【能量管理系统( EMS )】基于粒子群算法对光伏、蓄电池等分布式能源DG进行规模优化调度研究(Matlab代码实现)

💥1 概述

能量管理系统 (Energy Management System, EMS) 是一种用于优化调度分布式能源 (Distributed Generation, DG) 的技术。其中,光伏和蓄电池是常见的分布式能源形式。该系统利用粒子群算法进行规模优化调度,以实现对DG的有效管理和利用。


在该研究中,光伏和蓄电池作为分布式能源设备,被整合到能量管理系统中。粒子群算法作为一种优化算法应用于系统中,用于在考虑系统约束条件的情况下,寻找最佳的光伏和蓄电池的规模和调度策略。


研究的目标是通过对光伏和蓄电池的规模进行优化,使得系统的能效最大化或运行成本最小化。同时,通过合理调度光伏发电和蓄电池充放电,实现对电网负荷的平衡和优化。


通过粒子群算法的优化调度,能量管理系统可以更好地协调光伏和蓄电池等分布式能源设备的运行,实现电力系统的高效、稳定和可靠运行。此外,该研究还可以为制定分布式能源的规模和调度策略提供参考和指导,促进可再生能源的大规模应用和智能电网的发展。


📚2 运行结果

部分代码:

%% Main PSO
for n_ite=1:set.Niteration
    for n_par=1:set.Nparticle
        [LPSP,COE]=EMS(particle(n_par).position(1),...
            particle(n_par).position(2),...
            particle(n_par).position(3));
        %% Calculate Mark
        Mark=set.weight_LPSP*abs(LPSP-set.desired_LPSP)+...
            set.weight_COE*COE/set.Normal_COE;
        %% Best Particle
        if isempty(particle(n_par).best_Mark) || particle(n_par).best_Mark>Mark
            particle(n_par).best_position=particle(n_par).position;
            particle(n_par).best_LPSP=LPSP;
            particle(n_par).best_COE=COE;
            particle(n_par).best_Mark=Mark;
        end
        %% Best Global
        if (n_ite==1 && n_par==1) || best_global.Mark>Mark
            best_global.position=particle(n_par).position;
            best_global.LPSP=LPSP;
            best_global.COE=COE;
            best_global.Mark=Mark;
        end
        log_global(n_ite)=best_global;
        %% Velocity and New Position
        particle(n_par).velocity=set.w*particle(n_par).velocity...
            +set.c1*(particle(n_par).best_position-particle(n_par).position)...
            +set.c2*(best_global.position-particle(n_par).position);
        particle(n_par).position=particle(n_par).position...
            +particle(n_par).velocity;
        %% Round Position
        particle(n_par).position(1)=round(particle(n_par).position(1));
        particle(n_par).position(2)=round(particle(n_par).position(2));
        particle(n_par).position(3)=round(particle(n_par).position(3));
        %% Limit Position
        if particle(n_par).position(1)<set.Npv_min
            particle(n_par).position(1)=set.Npv_min;
        end
        if particle(n_par).position(2)<set.Nbat_min
            particle(n_par).position(2)=set.Nbat_min;
        end
        if particle(n_par).position(3)<set.Ndg_min
            particle(n_par).position(3)=set.Ndg_min;
        end
        if particle(n_par).position(1)>set.Npv_max
            particle(n_par).position(1)=set.Npv_max;
        end
        if particle(n_par).position(2)>set.Nbat_max
            particle(n_par).position(2)=set.Nbat_max;
        end
        if particle(n_par).position(3)>set.Ndg_max
            particle(n_par).position(3)=set.Ndg_max;
        end
    end
end
clear LPSP COE Mark n_ite n_par
%% Show Result
for n_ite=1:set.Niteration
    LPSP(n_ite)=log_global(n_ite).LPSP;
    COE(n_ite)=log_global(n_ite).COE;
end
subplot(2,1,1);
plot(LPSP);
grid on;
xlabel('n-th Iteration')
ylabel('Loss of Load Probability, LPSP');
subplot(2,1,2);
plot(COE);
grid on;
xlabel('n-th Iteration')
ylabel('Cost of Energy, COE ($)');
tpro=toc;
fprintf('The optimum system size is:\n   Npv=%d\n   Nbat=%d\n   Ndg=%d\nwith the LPSP = %.3f%% and COE = $%.2f\nCompute in %.2f s\n',...
    best_global.position,best_global.LPSP*100,best_global.COE,tpro);
beep;

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]张翀,张嘉楠,杨伟涛等.光储充多站合一能量管理系统设计[J].电气技术与经济,2023(03):125-128.


[2]杨睿陌. 基于混合MPPT算法的光伏能量管理系统设计[D].哈尔滨工业大学,2022.DOI:10.27061/d.cnki.ghgdu.2022.001839.


🌈4 Matlab代码实现

目录
打赏
0
0
0
0
78
分享
相关文章
基于广义Benders分解法的综合能源系统优化规划(matlab程序)
基于广义Benders分解法的综合能源系统优化规划(matlab程序)
基于分时电价和蓄电池控制策略用电优化研究(matlab代码)
基于分时电价和蓄电池控制策略用电优化研究(matlab代码)
碳交易机制下考虑需求响应的综合能源系统优化运行(matlab代码)
碳交易机制下考虑需求响应的综合能源系统优化运行(matlab代码)
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
计及多能耦合的区域综合能源系统电气热能流计算(含matlab代码)
计及多能耦合的区域综合能源系统电气热能流计算(含matlab代码)
基于纳什谈判理论的风–光–氢多主体能源系统合作运行方法(含matlab代码)
基于纳什谈判理论的风–光–氢多主体能源系统合作运行方法(含matlab代码)
考虑区域多能源系统集群协同优化的联合需求侧响应模型(matlab代码)
考虑区域多能源系统集群协同优化的联合需求侧响应模型(matlab代码)
【红外图像】利用红外图像处理技术对不同制冷剂充装的制冷系统进行性能评估(Matlab代码实现)
【红外图像】利用红外图像处理技术对不同制冷剂充装的制冷系统进行性能评估(Matlab代码实现)
【视频去噪】基于全变异正则化最小二乘反卷积是最标准的图像处理、视频去噪研究(Matlab代码实现)
【视频去噪】基于全变异正则化最小二乘反卷积是最标准的图像处理、视频去噪研究(Matlab代码实现)
|
8月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
322 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等