【能量管理系统( EMS )】基于粒子群算法对光伏、蓄电池等分布式能源DG进行规模优化调度研究(Matlab代码实现)

简介: 【能量管理系统( EMS )】基于粒子群算法对光伏、蓄电池等分布式能源DG进行规模优化调度研究(Matlab代码实现)

💥1 概述

能量管理系统 (Energy Management System, EMS) 是一种用于优化调度分布式能源 (Distributed Generation, DG) 的技术。其中,光伏和蓄电池是常见的分布式能源形式。该系统利用粒子群算法进行规模优化调度,以实现对DG的有效管理和利用。


在该研究中,光伏和蓄电池作为分布式能源设备,被整合到能量管理系统中。粒子群算法作为一种优化算法应用于系统中,用于在考虑系统约束条件的情况下,寻找最佳的光伏和蓄电池的规模和调度策略。


研究的目标是通过对光伏和蓄电池的规模进行优化,使得系统的能效最大化或运行成本最小化。同时,通过合理调度光伏发电和蓄电池充放电,实现对电网负荷的平衡和优化。


通过粒子群算法的优化调度,能量管理系统可以更好地协调光伏和蓄电池等分布式能源设备的运行,实现电力系统的高效、稳定和可靠运行。此外,该研究还可以为制定分布式能源的规模和调度策略提供参考和指导,促进可再生能源的大规模应用和智能电网的发展。


📚2 运行结果

部分代码:

%% Main PSO
for n_ite=1:set.Niteration
    for n_par=1:set.Nparticle
        [LPSP,COE]=EMS(particle(n_par).position(1),...
            particle(n_par).position(2),...
            particle(n_par).position(3));
        %% Calculate Mark
        Mark=set.weight_LPSP*abs(LPSP-set.desired_LPSP)+...
            set.weight_COE*COE/set.Normal_COE;
        %% Best Particle
        if isempty(particle(n_par).best_Mark) || particle(n_par).best_Mark>Mark
            particle(n_par).best_position=particle(n_par).position;
            particle(n_par).best_LPSP=LPSP;
            particle(n_par).best_COE=COE;
            particle(n_par).best_Mark=Mark;
        end
        %% Best Global
        if (n_ite==1 && n_par==1) || best_global.Mark>Mark
            best_global.position=particle(n_par).position;
            best_global.LPSP=LPSP;
            best_global.COE=COE;
            best_global.Mark=Mark;
        end
        log_global(n_ite)=best_global;
        %% Velocity and New Position
        particle(n_par).velocity=set.w*particle(n_par).velocity...
            +set.c1*(particle(n_par).best_position-particle(n_par).position)...
            +set.c2*(best_global.position-particle(n_par).position);
        particle(n_par).position=particle(n_par).position...
            +particle(n_par).velocity;
        %% Round Position
        particle(n_par).position(1)=round(particle(n_par).position(1));
        particle(n_par).position(2)=round(particle(n_par).position(2));
        particle(n_par).position(3)=round(particle(n_par).position(3));
        %% Limit Position
        if particle(n_par).position(1)<set.Npv_min
            particle(n_par).position(1)=set.Npv_min;
        end
        if particle(n_par).position(2)<set.Nbat_min
            particle(n_par).position(2)=set.Nbat_min;
        end
        if particle(n_par).position(3)<set.Ndg_min
            particle(n_par).position(3)=set.Ndg_min;
        end
        if particle(n_par).position(1)>set.Npv_max
            particle(n_par).position(1)=set.Npv_max;
        end
        if particle(n_par).position(2)>set.Nbat_max
            particle(n_par).position(2)=set.Nbat_max;
        end
        if particle(n_par).position(3)>set.Ndg_max
            particle(n_par).position(3)=set.Ndg_max;
        end
    end
end
clear LPSP COE Mark n_ite n_par
%% Show Result
for n_ite=1:set.Niteration
    LPSP(n_ite)=log_global(n_ite).LPSP;
    COE(n_ite)=log_global(n_ite).COE;
end
subplot(2,1,1);
plot(LPSP);
grid on;
xlabel('n-th Iteration')
ylabel('Loss of Load Probability, LPSP');
subplot(2,1,2);
plot(COE);
grid on;
xlabel('n-th Iteration')
ylabel('Cost of Energy, COE ($)');
tpro=toc;
fprintf('The optimum system size is:\n   Npv=%d\n   Nbat=%d\n   Ndg=%d\nwith the LPSP = %.3f%% and COE = $%.2f\nCompute in %.2f s\n',...
    best_global.position,best_global.LPSP*100,best_global.COE,tpro);
beep;

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]张翀,张嘉楠,杨伟涛等.光储充多站合一能量管理系统设计[J].电气技术与经济,2023(03):125-128.


[2]杨睿陌. 基于混合MPPT算法的光伏能量管理系统设计[D].哈尔滨工业大学,2022.DOI:10.27061/d.cnki.ghgdu.2022.001839.


🌈4 Matlab代码实现

相关文章
|
3月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
178 0
|
3月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
147 0
|
3月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
210 8
|
3月前
|
机器学习/深度学习 编解码 算法
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
225 8
|
3月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
391 0
|
3月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
269 2
|
4月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
269 3
|
4月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
196 6
|
3月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
228 8
|
3月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。

热门文章

最新文章