python利用CNN实现垃圾分类

简介: python利用CNN实现垃圾分类

1 介绍


下面主要用过CNN来实现垃圾的分类。在本数据集中,垃圾的种类有六种(和上海的标准不一样),分为玻璃、纸、硬纸板、塑料、金属、一般垃圾。

数据来源:垃圾分类数据


2 导入数据和包


import numpy as np
import matplotlib.pyplot as plt
from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array, array_to_img
from keras.layers import Conv2D, Flatten, MaxPooling2D, Dense
from keras.models import Sequential
import glob, os, random
base_path = '../input/trash_div7612/dataset-resized'#填写你下载文件的地址
img_list = glob.glob(os.path.join(base_path, '*/*.jpg'))
print(len(img_list))

输出结果:

我们总共有2527张图片。我们随机展示其中的6张图片。

for i, img_path in enumerate(random.sample(img_list, 6)):
    img = load_img(img_path)
    img = img_to_array(img, dtype=np.uint8)
    plt.subplot(2, 3, i+1)
    plt.imshow(img.squeeze())

输出结果:


3.对数据进行分组


train_datagen = ImageDataGenerator(
    rescale=1./225, shear_range=0.1, zoom_range=0.1,
    width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True,
    vertical_flip=True, validation_split=0.1)
test_datagen = ImageDataGenerator(
    rescale=1./255, validation_split=0.1)
train_generator = train_datagen.flow_from_directory(
    base_path, target_size=(300, 300), batch_size=16,
    class_mode='categorical', subset='training', seed=0)
validation_generator = test_datagen.flow_from_directory(
    base_path, target_size=(300, 300), batch_size=16,
    class_mode='categorical', subset='validation', seed=0)
labels = (train_generator.class_indices)
labels = dict((v,k) for k,v in labels.items())
print(labels)

输出结果:


4.模型的建立和训练

model = Sequential([
    Conv2D(filters=32, kernel_size=3, padding='same', activation='relu', input_shape=(300, 300, 3)),
    MaxPooling2D(pool_size=2),
    Conv2D(filters=64, kernel_size=3, padding='same', activation='relu'),
    MaxPooling2D(pool_size=2),
    Conv2D(filters=32, kernel_size=3, padding='same', activation='relu'),
    MaxPooling2D(pool_size=2),
    Conv2D(filters=32, kernel_size=3, padding='same', activation='relu'),
    MaxPooling2D(pool_size=2),
    Flatten(),
    Dense(64, activation='relu'),
    Dense(6, activation='softmax')
])
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
model.fit_generator(train_generator, epochs=100, steps_per_epoch=2276//32,validation_data=validation_generator,
                    validation_steps=251//32)

部分输出结果:


5.结果展示


下面我们随机抽取validation中的16张图片,展示图片以及其标签,并且给予我们的预测。


我们发现预测的准确度还是蛮高的,对于大部分图片,都能识别出其类别。

test_x, test_y = validation_generator.__getitem__(1)
preds = model.predict(test_x)
plt.figure(figsize=(16, 16))
for i in range(16):
    plt.subplot(4, 4, i+1)
    plt.title('pred:%s / truth:%s' % (labels[np.argmax(preds[i])], labels[np.argmax(test_y[i])]))
    plt.imshow(test_x[i])

相关文章
|
6月前
|
机器学习/深度学习 自然语言处理 异构计算
Python深度学习面试:CNN、RNN与Transformer详解
【4月更文挑战第16天】本文介绍了深度学习面试中关于CNN、RNN和Transformer的常见问题和易错点,并提供了Python代码示例。理解这三种模型的基本组成、工作原理及其在图像识别、文本处理等任务中的应用是评估技术实力的关键。注意点包括:模型结构的混淆、过拟合的防治、输入序列长度处理、并行化训练以及模型解释性。掌握这些知识和技巧,将有助于在面试中展现优秀的深度学习能力。
217 11
|
6月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
PYTHON TENSORFLOW 2二维卷积神经网络CNN对图像物体识别混淆矩阵评估|数据分享
PYTHON TENSORFLOW 2二维卷积神经网络CNN对图像物体识别混淆矩阵评估|数据分享
|
6月前
|
机器学习/深度学习 存储 监控
数据分享|Python卷积神经网络CNN身份识别图像处理在疫情防控下口罩识别、人脸识别
数据分享|Python卷积神经网络CNN身份识别图像处理在疫情防控下口罩识别、人脸识别
|
2天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
15 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
4月前
|
机器学习/深度学习 数据采集 算法
Python基于OpenCV和卷积神经网络CNN进行车牌号码识别项目实战
Python基于OpenCV和卷积神经网络CNN进行车牌号码识别项目实战
279 19
|
5月前
|
机器学习/深度学习 存储 数据挖掘
基于YOLOv8深度学习的生活垃圾分类目标检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
基于YOLOv8深度学习的生活垃圾分类目标检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
|
4月前
|
机器学习/深度学习 数据采集 算法
Python基于卷积神经网络CNN模型和VGG16模型进行图片识别项目实战
Python基于卷积神经网络CNN模型和VGG16模型进行图片识别项目实战
|
6月前
|
数据采集 XML 程序员
最新用Python做垃圾分类_python垃圾分类代码用key和format,5年经验Python程序员面试27天
最新用Python做垃圾分类_python垃圾分类代码用key和format,5年经验Python程序员面试27天
最新用Python做垃圾分类_python垃圾分类代码用key和format,5年经验Python程序员面试27天
|
6月前
|
机器学习/深度学习 算法 算法框架/工具
带你一文搞懂CNN以及图像识别(Python)
带你一文搞懂CNN以及图像识别(Python)
352 1
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
使用Python实现卷积神经网络(CNN)
使用Python实现卷积神经网络(CNN)的博客教程
318 1

热门文章

最新文章