基于粒子群优化算法的最优潮流(IEEE30节点(Matlab代码实现)

简介: 基于粒子群优化算法的最优潮流(IEEE30节点(Matlab代码实现)

💥1 概述

基于粒子群优化算法的最优潮流问题是电力系统中的一个重要优化问题,旨在通过调整发电机的出力、变压器的变比和线路的潮流分配,使得电力系统中的功率损耗最小,从而达到经济运行和电能质量要求。


下面是基于粒子群优化算法的最优潮流求解步骤:


1. 确定优化目标:最优潮流问题的优化目标通常为最小化功率损耗,可以定义为目标函数。目标函数可以由潮流方程和功率损耗公式组成。


2. 确定问题约束:最优潮流问题还涉及到一系列约束条件,包括电压限制、功率平衡条件、线路容量限制等。这些约束条件需要在优化过程中得到满足。


3. 设计粒子表示:将潮流问题转化为一个多维优化问题,需要将各个调节变量编码成粒子的位置。其中,调节变量包括发电机出力、变压器变比和线路潮流等。


4. 初始化粒子群:随机生成一组粒子初始位置和速度,代表个体解,同时需要设置全局最优位置和最优适应度。


5. 更新粒子位置和速度:通过粒子群优化算法,根据各粒子的历史最优位置和全局最优位置,更新粒子的位置和速度。更新公式中的参数和系数可以根据实际情况进行调整。


6. 评估适应度:根据更新的粒子位置,计算相应的适应度值,即目标函数值。


7. 更新最优解:根据适应度值的比较,更新局部最优位置和全局最优位置。


8. 终止条件:定义一定的终止条件,如达到最大迭代次数、适应度值足够小等,终止优化过程。


9. 输出优化结果:输出全局最优位置对应的调节变量值,即最优潮流解。


基于粒子群优化算法的最优潮流求解能够提供电力系统经济运行的一系列优化调度方案,从而实现功率损耗最小化、供需平衡和线路安全运行的目标。


最优潮流(OPF)问题在电力系统运行中很重要。OPF 问题的目标是通过在满足某些操作约束的同时优化特定目标来确定电力系统的最佳运行状态。

本文说明了如何使用元启发式方法解决 OPF 问题。


📚2 运行结果

30节点数据:

function Data=IEEE_30_bus_Data
basemva = 100;
accuracy = 0.001;
maxiter = 50;
%        IEEE 30-BUS TEST SYSTEM (American Electric Power)
%        Bus Bus  Voltage Angle   ---Load---- -------Generator----- Injected
%        No  code Mag.    Degree  MW    Mvar  MW  Mvar Qmin Qmax     Mvar
busdata=[1    1    1.06    0.0     0.0   0.0    0.0  0.0   0   0       0
         2    2    1.043   0.0   21.70  12.7   40.0  0.0 -40  50       0
         3    3    1.0     0.0     2.4   1.2    0.0  0.0   0   0       0
         4    3    1.06    0.0     7.6   1.6    0.0  0.0   0   0       0
         5    2    1.01    0.0    94.2  19.0    0.0  0.0 -40  40       0
         6    3    1.0     0.0     0.0   0.0    0.0  0.0   0   0       0
         7    3    1.0     0.0    22.8  10.9    0.0  0.0   0   0       0
         8    2    1.01    0.0    30.0  30.0    0.0  0.0 -10  40       0
         9    3    1.0     0.0     0.0   0.0    0.0  0.0   0   0       0
         10   3    1.0     0.0     5.8   2.0    0.0  0.0  -6  24      19
         11   2    1.082   0.0     0.0   0.0    0.0  0.0   0   0       0
         12   3    1.0     0       11.2  7.5    0    0     0   0       0
         13   2    1.071   0        0    0.0    0    0    -6  24       0
         14   3    1       0       6.2   1.6    0    0     0   0       0
         15   3    1       0       8.2   2.5    0    0     0   0       0
         16   3    1       0       3.5   1.8    0    0     0   0       0
         17   3    1       0       9.0   5.8    0    0     0   0       0
         18   3    1       0       3.2   0.9    0    0     0   0       0
         19   3    1       0       9.5   3.4    0    0     0   0       0
         20   3    1       0       2.2   0.7    0    0     0   0       0
         21   3    1       0      17.5  11.2    0    0     0   0       0
         22   3    1       0       0     0.0    0    0     0   0       0
         23   3    1       0       3.2   1.6    0    0     0   0       0
         24   3    1       0       8.7   6.7    0    0     0   0      4.3
         25   3    1       0       0     0.0    0    0     0   0       0
         26   3    1       0       3.5   2.3    0    0     0   0       0
         27   3    1       0       0     0.0    0    0     0   0       0
         28   3    1       0       0     0.0    0    0     0   0       0
         29   3    1       0       2.4   0.9    0    0     0   0       0
         30   3    1       0      10.6   1.9    0    0     0   0       0];
% busdata=[1    1    1.06    0    0    0
% 2    2    1.043    0    21.7    12.7
% 3    3    1    0    2.4    1.2
% 4    3    1.06    0    7.6    1.6
% 5    2    1.01    0    94.2    19
% 6    3    1    0    0    0
% 7    3    1    0    22.8    10.9
% 8    2    1.01    0    30    30
% 9    3    1    0    0    0
% 10    3    1    0    5.8    2
% 11    2    1.082    0    0    0
% 12    3    1    0    11.2    7.5
% 13    2    1.071    0    0    0
% 14    3    1    0    6.2    1.6
% 15    3    1    0    8.2    2.5
% 16    3    1    0    3.5    1.8
% 17    3    1    0    9    5.8
% 18    3    1    0    3.2    0.9
% 19    3    1    0    9.5    3.4
% 20    3    1    0    2.2    0.7
% 21    3    1    0    17.5    11.2
% 22    3    1    0    0    0
% 23    3    1    0    3.2    1.6
% 24    3    1    0    8.7    6.7
% 25    3    1    0    0    0
% 26    3    1    0    3.5    2.3
% 27    3    1    0    0    0
% 28    3    1    0    0    0
% 29    3    1    0    2.4    0.9
% 30    3    1    0    10.6    1.9    ];
%                                        Line code
%           Bus bus   R      X        1/2 B    = 1 for lines
%           nl  nr  p.u.   p.u.       p.u.     > 1 or < 1 tr. tap at bus nl
% linedata=[  1   2   0.0192   0.0575   0.02640    1
%             1   3   0.0452   0.1852   0.02040    1
%             2   4   0.0570   0.1737   0.01840    1
%             3   4   0.0132   0.0379   0.00420    1
%             2   5   0.0472   0.1983   0.02090    1
%             2   6   0.0581   0.1763   0.01870    1
%             4   6   0.0119   0.0414   0.00450    1
%             5   7   0.0460   0.1160   0.01020    1
%             6   7   0.0267   0.0820   0.00850    1
%             6   8   0.0120   0.0420   0.00450    1
%             6   9   0.0      0.2080   0.0    1.078
%             6  10   0         .5560   0      1.069
%             9  11   0         .2080   0          1
%             9  10   0         .1100   0          1
%             4  12   0         .2560   0      1.032
%             12  13   0         .1400   0          1
%             12  14    .1231    .2559   0          1
%             12  15    .0662    .1304   0          1
%             12  16    .0945    .1987   0          1
%             14  15    .2210    .1997   0          1
%             16  17    .0824    .1932   0          1
%             15  18    .1070    .2185   0          1
%             18  19    .0639    .1292   0          1
%             19  20    .0340    .0680   0          1
%             10  20    .0936    .2090   0          1
%             10  17    .0324    .0845   0          1
%             10  21    .0348    .0749   0          1
%             10  22    .0727    .1499   0          1
%             21  22    .0116    .0236   0          1
%             15  23    .1000    .2020   0          1
%             22  24    .1150    .1790   0          1
%             23  24    .1320    .2700   0          1
%             24  25    .1885    .3292   0          1
%             25  26    .2544    .3800   0          1
%             25  27    .1093    .2087   0          1
%             28  27     0       .3960   0      1.068
%             27  29    .2198    .4153   0          1
%             27  30    .3202    .6027   0          1
%             29  30    .2399    .4533   0          1
%             8   28    .0636    .2000   0.0214     1
%             6   28    .0169    .0599   0.0065      1];
linedata=[ 1    2    0.0192    0.0575    0.0264    1
1    3    0.0452    0.1852    0.0204    1
2    4    0.057    0.1737    0.0184    1
3    4    0.0132    0.0379    0.0042    1
2    5    0.0472    0.1983    0.0209    1
2    6    0.0581    0.1763    0.0187    1
4    6    0.0119    0.0414    0.0045    1
5    7    0.046    0.116    0.0102    1
6    7    0.0267    0.082    0.0085    1
6    8    0.012    0.042    0.0045    1
6    9    0    0.208    0    1.078
6    10    0    0.556    0    1.069
9    11    0    0.208    0    1
9    10    0    0.11    0    1
4    12    0    0.256    0    1.032
12    13    0    0.14    0    1
12    14    0.1231    0.2559    0    1
12    15    0.0662    0.1304    0    1
12    16    0.0945    0.1987    0    1
14    15    0.221    0.1997    0    1
16    17    0.0824    0.1923    0    1
15    18    0.107    0.2185    0    1
18    19    0.0639    0.1292    0    1
19    20    0.034    0.068    0    1
10    20    0.0936    0.209    0    1
10    17    0.0324    0.0845    0    1
10    21    0.0348    0.0749    0    1
10    22    0.0727    0.1499    0    1
21    22    0.0116    0.0236    0    1
15    23    0.1    0.202    0    1
22    24    0.115    0.179    0    1
23    24    0.132    0.27    0    1
24    25    0.1885    0.3292    0    1
25    26    0.2544    0.38    0    1
25    27    0.1093    0.2087    0    1
28    27    0    0.396    0    1.068
27    29    0.2198    0.4153    0    1
27    30    0.3202    0.6027    0    1
29    30    0.2399    0.4533    0    1
8    28    0.0636    0.2    0.0214    1
6    28    0.0169    0.0599    0.0065    1];
%            Cost
%            Coefficients
CostCoeff = [0 2.00 .00375;
             0 1.75 .01750;
             0 1.00 .06250;
             0 3.25 .00834;
             0 3.00 .02500;
             0 3.00 .02500];
GeneratorInd=[1; find(busdata(:,2)==2)];
LoadInd=find(busdata(:,2)==3);
% NG: the number of generators.
NG=length(GeneratorInd);
% NL: the number of load buses.
NL=length(LoadInd);
% nbus The number of buses
nbus = max(max(linedata(:,1)), max( linedata(:,2)));
% nbr: the number of transmission lines.
nbr=length(linedata(:,1));
BusTypes=busdata(:,2);
NodeList=busdata(:,1);
QCInd=[ 10 12 15 17 20 21 23 24 29]; % Shunt VAR compensation N掳 of lines.
TInd=[11 12 15 36]; % Transformer tap settings T N掳 of lines.
NQC=length(QCInd);
NT=length(TInd);
Data.NQC=NQC;
Data.NT=NT;
VmLim=ones(30,1)*[.95 1.1];
VmLim([GeneratorInd],2)=1.1;
VmMin=VmLim(:,1);
VmMax=VmLim(:,2);
Data.VmMin=VmMin;
Data.VmMax=VmMax;
PLim=zeros(30,2);
PLim(GeneratorInd,:) = [50 200; 20 80; 15 50; 10 35; 10 30; 12 40];
PGMin=PLim(GeneratorInd,1);
PGMax=PLim(GeneratorInd,2);
Data.PGMin=PGMin;
Data.PGMax=PGMax;
PG1Min=PLim(1,1);
PG1Max=PLim(1,2);
Data.PG1Min=PG1Min;
Data.PG1Max=PG1Max;
QLim=zeros(30,2);
QLim(GeneratorInd,:) = [-20 200; -20 100; -15 80; -15 60; -10 50; -15 60];
% QLim= [busdata(:,9) busdata(:,10)];
QLimMin=QLim(:,1);
QLimMax=QLim(:,2);
Data.QLimMin=QLimMin;
Data.QLimMax=QLimMax;
QCLim = ones(length(QCInd),1)*[0 5];
QCMin=QCLim(:,1);
QCMax=QCLim(:,2);
Data.QCMin=QCMin;
Data.QCMax=QCMax;
TLim = ones(length(TInd),1)*[.9 1.1];
TMin=TLim(:,1);
TMax=TLim(:,2);
Data.TMin=TMin;
Data.TMax=TMax;
Data.QCInd=QCInd;
Data.TInd=TInd;
Data.busdata=busdata;
Data.linedata=linedata;
Data.Ybus0=[];
Data.GeneratorInd=GeneratorInd;
Data.LoadInd=LoadInd;
Data.CostCoeff=CostCoeff;
Data.basemva=basemva;
Data.nbus=nbus;
Data.nbr=nbr;
Data.NG=NG;
Data.NL=NL;
Data.NodeList=NodeList;
Data.BusTypes=BusTypes;
LineMVA=[...
    0.000    1.300    1.300    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000;
    1.300    0.000    0.000    0.650    1.300    0.650    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000;
    1.300    0.000    0.000    1.300    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000;
    0.000    0.650    1.300    0.000    0.000    0.900    0.000    0.000    0.000    0.000    0.000    0.650    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000;
    0.000    1.300    0.000    0.000    0.000    0.000    0.700    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000;
    0.000    0.650    0.000    0.900    0.000    0.000    1.300    0.320    0.650    0.320    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.320    0.000    0.000;
    0.000    0.000    0.000    0.000    0.700    1.300    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000;
    0.000    0.000    0.000    0.000    0.000    0.320    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.320    0.000    0.000;
    0.000    0.000    0.000    0.000    0.000    0.650    0.000    0.000    0.000    0.650    0.650    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000;
    0.000    0.000    0.000    0.000    0.000    0.320    0.000    0.000    0.650    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.320    0.000    0.000    0.320    0.320    0.320    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000;
    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.650    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000;
    0.000    0.000    0.000    0.650    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.650    0.320    0.320    0.320    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000;
    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.650    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000;
    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.320    0.000    0.000    0.160    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000;
    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.320    0.000    0.160    0.000    0.000    0.000    0.160    0.000    0.000    0.000    0.000    0.160    0.000    0.000    0.000    0.000    0.000    0.000    0.000;
    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.320    0.000    0.000    0.000    0.000    0.160    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000;
    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.320    0.000    0.000    0.000    0.000    0.000    0.160    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000;
    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.160    0.000    0.000    0.000    0.160    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000;
    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.160    0.000    0.320    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000;
    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.320    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.320    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000;
    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.320    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.320    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000;
    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.320    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.320    0.000    0.000    0.160    0.000    0.000    0.000    0.000    0.000    0.000;
    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.160    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.160    0.000    0.000    0.000    0.000    0.000    0.000;
    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.160    0.160    0.000    0.160    0.000    0.000    0.000    0.000    0.000;
    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.160    0.000    0.160    0.160    0.000    0.000    0.000;
    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.160    0.000    0.000    0.000    0.000    0.000;
    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.160    0.000    0.000    0.650    0.160    0.160;
    0.000    0.000    0.000    0.000    0.000    0.320    0.000    0.320    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.650    0.000    0.000    0.000;
    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.160    0.000    0.000    0.160;
    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.160    0.000    0.160    0.000];
LineMVA = LineMVA + diag(inf*ones(length(NodeList),1)); % Don't limit shunt power at buses
Data.LineMVA=LineMVA;

🎉3 参考文献

[1]Bouchekara, H. R. E. H. “Optimal Power Flow Using Black-Hole-Based Optimization Approach.” Applied Soft Computing, vol. 24, Elsevier BV, Nov. 2014, pp. 879–88, doi:10.1016/j.asoc.2014.08.056.


[2]Bouchekara, H. R. E. H., et al. “Optimal Power Flow Using Teaching-Learning-Based Optimization Technique.” Electric Power Systems Research, vol. 114, Elsevier BV, Sept. 2014, pp. 49–59, doi:10.1016/j.epsr.2014.03.032.


🌈4 Matlab代码实现

相关文章
|
3天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
2天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
6天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
240 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
144 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
113 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)