Redis - 三大缓存问题(穿透、击穿、雪崩)

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: Redis 三大缓存问题的概念以及对应的解决方案......

缓存穿透

概念: 查询一个数据库中也不存在的数据,数据库查询不到数据也就不会写入缓存,就会导致一直查询数据库

解决方法:

1. 缓存空数据

如果数据库也查询不到,就把空结果进行缓存

缺点是 - 消耗内存

2. 使用布隆过滤器

布隆过滤器的作用 :检索一个元素是否在某个集合中

布隆过滤器由组成 : 位图 + 若干哈希函数

位图: 一个以 bit (位) 为单位的数组,数组中的每个单位只能存储二进制数 0 或 1 ,并且在初始状态下都为 1

比如数据库中有个 id=1 的数据,布隆过滤器会通过三个哈希函数分别计算出其哈希值为 1 、3 、7 ,将这三个位置的值置为 1

接着依次将数据库中的其他数据按照该方法写入布隆过滤器

如果此时请求查询 id = -1,根据那三个哈希函数计算得到的哈希值为 1 、 3 、 14 ,并且位图中 14 位置的值为0, 那么我们就可以肯定这个数据在MySQL中不存在

但如果 计算出来的值是 1 、 3 、 14 ,且这三个位置的值都为 1,那也不能确定 id=-1 的数据在数据库中存在,比如以下情况

1 、 3 、 14 三个位置的值都为 1 ,并不是因为 id=-1 的数据存在,而是恰巧 id=1 和 id=2 的存在使得 1 、 3 、 14 三个位置的值都为 1

我们可以想到,数组越小,误判的概率就越大,上面的位图只是做演示,实际上的位图长度非常长

在 Java 中提供了具体的实现方案 Redisson 和 Guava

布隆过滤器的预热 和 缓存的预热是在同一时刻进行的,之后的请求都会先打到布隆过滤器上,如果布隆过滤器判断该数据不存在直接返回,如果判断存在再放行查询缓存

缓存击穿

概念:一个非常热点的key在扛着大并发,当这个key过期的时候,持续的大并发就穿破缓存,直接打到数据库上,把数据库压垮

解决方法:

添加互斥锁(分布式锁)

当 线程1 查询缓存未命中时,添加一个互斥锁,接着查询数据库重建缓存,重建缓存的过程中,又来个 线程2 ,线程2 也不会命中缓存,那么 线程2 会尝试获取互斥锁,但是失败(因为此时被线程1持有),线程2 会休眠一会儿重试,直到 线程1 重建缓存成功,线程2 N次尝试后命中缓存

实例代码如下:

逻辑过期

概念: 对热点数据不设置过期时间,我们在写缓存的时候添加一个过期时间字段

其执行过程如下

线程1 查询缓存,发现数据已经逻辑过期,则获取互斥锁,并创建子线程 线程2 去重建缓存,然后直接返回过期的数据,在 线程2 重建缓存的过程中,又来个 线程3 发现缓存也过期了,而获取互斥锁失败,同样直接返回过期数据

两种方法的比较:

  • 互斥锁 -- 能保证数据的强一致性 但是 性能较差
  • 逻辑过期 -- 优先保证高可用,但是数据一致性较差

现实开发过程中,要根据不同的业务场景进行选择,如果业务中设计金钱交易,一般要保证高可用,选择互斥锁,而在互联网的场景中,更加注重用户体验的场景,首选逻辑过期方案

缓存雪崩

概念: 在同一个时段内,有大量的key同时失效 或者 Redis服务器宕机,导致大量请求到达服务器,带来巨大压力

解决方法:

如果是有大量的key同时失效 -- 给不同的key的过期时间添加随机值

如果是Redis服务器宕机 -- 搭建Redis高可用集群

兜底方案 -- 给缓存业务添加降级限流策略

对于这三个问题,都可以使用 降级限流策略 解决,但是降级限流会影响用户体验

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
16天前
|
存储 缓存 NoSQL
解决Redis缓存数据类型丢失问题
解决Redis缓存数据类型丢失问题
158 85
|
13天前
|
缓存 监控 NoSQL
Redis经典问题:缓存穿透
本文详细探讨了分布式系统和缓存应用中的经典问题——缓存穿透。缓存穿透是指用户请求的数据在缓存和数据库中都不存在,导致大量请求直接落到数据库上,可能引发数据库崩溃或性能下降。文章介绍了几种有效的解决方案,包括接口层增加校验、缓存空值、使用布隆过滤器、优化数据库查询以及加强监控报警机制。通过这些方法,可以有效缓解缓存穿透对系统的影响,提升系统的稳定性和性能。
|
2月前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
2月前
|
缓存 NoSQL 数据库
缓存穿透、缓存击穿和缓存雪崩及其解决方案
在现代应用中,缓存是提升性能的关键技术之一。然而,缓存系统也可能遇到一系列问题,如缓存穿透、缓存击穿和缓存雪崩。这些问题可能导致数据库压力过大,甚至系统崩溃。本文将探讨这些问题及其解决方案。
|
2月前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
46 5
|
存储 缓存 NoSQL
Spring Boot2.5 实战 MongoDB 与高并发 Redis 缓存|学习笔记
快速学习 Spring Boot2.5 实战 MongoDB 与高并发 Redis 缓存
Spring Boot2.5 实战 MongoDB 与高并发 Redis 缓存|学习笔记
|
缓存 NoSQL 安全
6.0Spring Boot 2.0实战 Redis 分布式缓存6.0|学习笔记
快速学习6.0Spring Boot 2.0实战 Redis 分布式缓存6.0。
342 0
6.0Spring Boot 2.0实战 Redis 分布式缓存6.0|学习笔记
|
缓存 NoSQL Redis
首页数据显示-添加 redis 缓存(3)| 学习笔记
快速学习 首页数据显示-添加 redis 缓存(3)
157 0
首页数据显示-添加 redis 缓存(3)| 学习笔记
|
缓存 NoSQL Java
首页数据显示-添加 redis 缓存(1) | 学习笔记
快速学习 首页数据显示-添加 redis 缓存(1)
244 0
首页数据显示-添加 redis 缓存(1) | 学习笔记
|
存储 缓存 NoSQL
Redis 缓存|学习笔记
快速学习Redis 缓存
120 0