自然语言生成任务中的5种采样方法介绍和Pytorch代码实现

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 在自然语言生成任务(NLG)中,采样方法是指从生成模型中获取文本输出的一种技术。本文将介绍常用的5中方法并用Pytorch进行实现。

1、Greedy Decoding

Greedy Decoding在每个时间步选择当前条件概率最高的词语作为输出,直到生成结束。在贪婪解码中,生成模型根据输入序列,逐个时间步地预测输出序列中的每个词语。在每个时间步,模型根据当前的隐藏状态和已生成的部分序列计算每个词语的条件概率分布,模型选择具有最高条件概率的词语作为当前时间步的输出。这个词语成为下一个时间步的输入,生成过程持续直到满足某种终止条件,比如生成了指定长度的序列或者生成了特殊的结束标记。

这种方法简单高效,每个时间步只需计算当前条件概率最高的词语,因此计算速度较快。但是由于每个时间步只考虑当前条件概率最高的词语,贪婪解码可能会陷入局部最优解,而无法获得全局最优解。这可能导致生成的文本缺乏多样性或不准确。

尽管贪婪解码存在一些局限性,但它仍然是许多序列生成任务中常用的一种方法,特别是在对速度要求较高或者任务较为简单的情况下。

 defgreedy_decoding(input_ids, max_tokens=300):
     withtorch.inference_mode():
         for_inrange(max_tokens):
             outputs=model(input_ids)
             next_token_logits=outputs.logits[:, -1, :]
             next_token=torch.argmax(next_token_logits, dim=-1)
             ifnext_token==tokenizer.eos_token_id:
                 break
             input_ids=torch.cat([input_ids, rearrange(next_token, 'c -> 1 c')], dim=-1)
         generated_text=tokenizer.decode(input_ids[0])
     returngenerated_text

2、Beam Search

束搜索(Beam Search)是贪婪解码的一种扩展,通过在每个时间步保留多个候选序列来克服贪婪解码的局部最优问题。

在每个时间步保留概率最高的前几个候选词语,然后在下一个时间步基于这些候选词语继续扩展,直到生成结束。束搜索通过考虑多个候选词语路径,可以在一定程度上增加生成文本的多样性。

在束搜索中,模型在每个时间步会生成多个候选序列,而不是仅选择一个最优序列。模型会根据当前已生成的部分序列和隐藏状态,预测下一个时间步可能的词语,并计算每个词语的条件概率分布。

上图的每一步中,只保留两条最可能的路径(根据beam =2),而所有其他都被丢弃。此过程将继续进行,直到满足停止条件,该停止条件可以是生成序列结束令牌或达到最大序列长度的模型。最终输出将是最后一组路径中具有最高总体概率的序列。

 fromeinopsimportrearrange
 importtorch.nn.functionalasF

 defbeam_search(input_ids, max_tokens=100, beam_size=2):
     beam_scores=torch.zeros(beam_size).to(device)
     beam_sequences=input_ids.clone()
     active_beams=torch.ones(beam_size, dtype=torch.bool)
     forstepinrange(max_tokens):
         outputs=model(beam_sequences)
         logits=outputs.logits[:, -1, :]
         probs=F.softmax(logits, dim=-1)
         top_scores, top_indices=torch.topk(probs.flatten(), k=beam_size, sorted=False)
         beam_indices=top_indices//probs.shape[-1]
         token_indices=top_indices%probs.shape[-1]
         beam_sequences=torch.cat([
             beam_sequences[beam_indices],
             token_indices.unsqueeze(-1)
         ], dim=-1)
         beam_scores=top_scores
         active_beams=~(token_indices==tokenizer.eos_token_id)
         ifnotactive_beams.any():
             print("no active beams")
             break
     best_beam=beam_scores.argmax()
     best_sequence=beam_sequences[best_beam]
     generated_text=tokenizer.decode(best_sequence)
     returngenerated_text

3、Temperature Sampling

温度参数采样(Temperature Sampling)常用于基于概率的生成模型,如语言模型。它通过引入一个称为“温度”(Temperature)的参数来调整模型输出的概率分布,从而控制生成文本的多样性。

在温度参数采样中,模型在每个时间步生成词语时,会计算出词语的条件概率分布。然后模型将这个条件概率分布中的每个词语的概率值除以温度参数,对结果进行归一化处理,获得新的归一化概率分布。较高的温度值会使概率分布更平滑,从而增加生成文本的多样性。低概率的词语也有较高的可能性被选择;而较低的温度值则会使概率分布更集中,更倾向于选择高概率的词语,因此生成的文本更加确定性。最后模型根据这个新的归一化概率分布进行随机采样,选择生成的词语。

 importtorch
 importtorch.nn.functionalasF

 deftemperature_sampling(logits, temperature=1.0):
     logits=logits/temperature
     probabilities=F.softmax(logits, dim=-1)
     sampled_token=torch.multinomial(probabilities, 1)
     returnsampled_token.item()

4、Top-K Sampling

Top-K 采样(在每个时间步选择条件概率排名前 K 的词语,然后在这 K 个词语中进行随机采样。这种方法既能保持一定的生成质量,又能增加文本的多样性,并且可以通过限制候选词语的数量来控制生成文本的多样性。

这个过程使得生成的文本在保持一定的生成质量的同时,也具有一定的多样性,因为在候选词语中仍然存在一定的竞争性。

参数 K 控制了在每个时间步中保留的候选词语的数量。较小的 K 值会导致更加贪婪的行为,因为只有少数几个词语参与随机采样,而较大的 K 值会增加生成文本的多样性,但也会增加计算开销。

 deftop_k_sampling(input_ids, max_tokens=100, top_k=50, temperature=1.0):
    for_inrange(max_tokens):
         withtorch.inference_mode():
             outputs=model(input_ids)
             next_token_logits=outputs.logits[:, -1, :]
             top_k_logits, top_k_indices=torch.topk(next_token_logits, top_k)
             top_k_probs=F.softmax(top_k_logits/temperature, dim=-1)
             next_token_index=torch.multinomial(top_k_probs, num_samples=1)
             next_token=top_k_indices.gather(-1, next_token_index)
             input_ids=torch.cat([input_ids, next_token], dim=-1)
     generated_text=tokenizer.decode(input_ids[0])
     returngenerated_text

5、Top-P (Nucleus) Sampling:

Nucleus Sampling(核采样),也被称为Top-p Sampling旨在在保持生成文本质量的同时增加多样性。这种方法可以视作是Top-K Sampling的一种变体,它在每个时间步根据模型输出的概率分布选择概率累积超过给定阈值p的词语集合,然后在这个词语集合中进行随机采样。这种方法会动态调整候选词语的数量,以保持一定的文本多样性。

在Nucleus Sampling中,模型在每个时间步生成词语时,首先按照概率从高到低对词汇表中的所有词语进行排序,然后模型计算累积概率,并找到累积概率超过给定阈值p的最小词语子集,这个子集就是所谓的“核”(nucleus)。模型在这个核中进行随机采样,根据词语的概率分布来选择最终输出的词语。这样做可以保证所选词语的总概率超过了阈值p,同时也保持了一定的多样性。

参数p是Nucleus Sampling中的重要参数,它决定了所选词语的概率总和。p的值会被设置在(0,1]之间,表示词语总概率的一个下界。

Nucleus Sampling 能够保持一定的生成质量,因为它在一定程度上考虑了概率分布。通过选择概率总和超过给定阈值p的词语子集进行随机采样,Nucleus Sampling 能够增加生成文本的多样性。

 deftop_p_sampling(input_ids, max_tokens=100, top_p=0.95):
     withtorch.inference_mode():
         for_inrange(max_tokens):
                 outputs=model(input_ids)
                 next_token_logits=outputs.logits[:, -1, :]
                 sorted_logits, sorted_indices=torch.sort(next_token_logits, descending=True)
                 sorted_probabilities=F.softmax(sorted_logits, dim=-1) 
                 cumulative_probs=torch.cumsum(sorted_probabilities, dim=-1)
                 sorted_indices_to_remove=cumulative_probs>top_p
                 sorted_indices_to_remove[..., 0] =False
                 indices_to_remove=sorted_indices[sorted_indices_to_remove]
                 next_token_logits.scatter_(-1, indices_to_remove[None, :], float('-inf'))
                 probs=F.softmax(next_token_logits, dim=-1)
                 next_token=torch.multinomial(probs, num_samples=1)
                 input_ids=torch.cat([input_ids, next_token], dim=-1)
         generated_text=tokenizer.decode(input_ids[0])
     returngenerated_text

总结

自然语言生成任务中,采样方法是非常重要的。选择合适的采样方法可以在一定程度上影响生成文本的质量、多样性和效率。上面介绍的几种采样方法各有特点,适用于不同的应用场景和需求。

贪婪解码是一种简单直接的方法,适用于速度要求较高的情况,但可能导致生成文本缺乏多样性。束搜索通过保留多个候选序列来克服贪婪解码的局部最优问题,生成的文本质量更高,但计算开销较大。Top-K 采样和核采样可以控制生成文本的多样性,适用于需要平衡质量和多样性的场景。温度参数采样则可以根据温度参数灵活调节生成文本的多样性,适用于需要平衡多样性和质量的任务。

https://avoid.overfit.cn/post/42c2631bc56347849d538768d84d47c2

目录
相关文章
|
1月前
|
存储 物联网 PyTorch
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
**Torchtune**是由PyTorch团队开发的一个专门用于LLM微调的库。它旨在简化LLM的微调流程,提供了一系列高级API和预置的最佳实践
139 59
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
|
2月前
|
数据采集 自然语言处理 机器人
如何使用生成器来提高自然语言处理任务的性能?
如何使用生成器来提高自然语言处理任务的性能?
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
CNN中的注意力机制综合指南:从理论到Pytorch代码实现
注意力机制已成为深度学习模型的关键组件,尤其在卷积神经网络(CNN)中发挥了重要作用。通过使模型关注输入数据中最相关的部分,注意力机制显著提升了CNN在图像分类、目标检测和语义分割等任务中的表现。本文将详细介绍CNN中的注意力机制,包括其基本概念、不同类型(如通道注意力、空间注意力和混合注意力)以及实际实现方法。此外,还将探讨注意力机制在多个计算机视觉任务中的应用效果及其面临的挑战。无论是图像分类还是医学图像分析,注意力机制都能显著提升模型性能,并在不断发展的深度学习领域中扮演重要角色。
106 10
|
2月前
|
自然语言处理 PyTorch 算法框架/工具
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
【10月更文挑战第1天】随着深度学习技术的进步,预训练模型已成为自然语言处理(NLP)领域的常见实践。这些模型通过大规模数据集训练获得通用语言表示,但需进一步微调以适应特定任务。本文通过简化流程和示例代码,介绍了如何选择预训练模型(如BERT),并利用Python库(如Transformers和PyTorch)进行微调。文章详细说明了数据准备、模型初始化、损失函数定义及训练循环等关键步骤,并提供了评估模型性能的方法。希望本文能帮助读者更好地理解和实现模型微调。
76 2
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
|
2月前
|
机器学习/深度学习 存储 自然语言处理
从理论到实践:如何使用长短期记忆网络(LSTM)改善自然语言处理任务
【10月更文挑战第7天】随着深度学习技术的发展,循环神经网络(RNNs)及其变体,特别是长短期记忆网络(LSTMs),已经成为处理序列数据的强大工具。在自然语言处理(NLP)领域,LSTM因其能够捕捉文本中的长期依赖关系而变得尤为重要。本文将介绍LSTM的基本原理,并通过具体的代码示例来展示如何在实际的NLP任务中应用LSTM。
98 4
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现
本文介绍了几种常用的计算机视觉注意力机制及其PyTorch实现,包括SENet、CBAM、BAM、ECA-Net、SA-Net、Polarized Self-Attention、Spatial Group-wise Enhance和Coordinate Attention等,每种方法都附有详细的网络结构说明和实验结果分析。通过这些注意力机制的应用,可以有效提升模型在目标检测任务上的性能。此外,作者还提供了实验数据集的基本情况及baseline模型的选择与实验结果,方便读者理解和复现。
36 0
聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
【自然语言处理】TF-IDF算法在人工智能方面的应用,附带代码
TF-IDF算法在人工智能领域,特别是自然语言处理(NLP)和信息检索中,被广泛用于特征提取和文本表示。以下是一个使用Python的scikit-learn库实现TF-IDF算法的简单示例,并展示如何将其应用于文本数据。
269 65
|
2月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
|
2月前
|
机器学习/深度学习 自然语言处理 数据可视化
【NLP自然语言处理】文本张量表示方法
【NLP自然语言处理】文本张量表示方法
|
2月前
|
人工智能 自然语言处理 搜索推荐
【NLP自然语言处理】文本处理的基本方法
【NLP自然语言处理】文本处理的基本方法