基于麻雀算法优化的深度极限学习机DLM的预测算法(Matlab代码实现)

简介: 基于麻雀算法优化的深度极限学习机DLM的预测算法(Matlab代码实现)

💥1 概述

根据ELM-AE的特征表示能力,将它作为深度极限学习机 DELM的基本单元。与传统深度学习算法相同,DELM也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。

DELM的思想是通过最大限度地降低重构误差使输出可以无限接近原始输入,经过每一层的训练,可以学习到原始数据的高级特征。图2描述了DELM模型的训练过程,将输入数据样本X作为第1个ELM-AE的目标输出(=X),进而求取输出权值βr﹔然后将DELM第1个隐藏层的输出矩阵H当作下1个ELM ― AE的输入与目标输出(=X),依次类推逐层训练,最后1层用ELM来训练,使用式(2)来求解DELM的最后1个隐藏层的输出权重。图2中是最后1个隐藏层的输出矩阵,T是样本标签。每1层隐藏层的输入权重矩阵为。


📚2 运行结果

部分代码:

%% 带初始权重的DELM训练函数
%输入-----------------------
%InputWietht:输入的初始权重
%P_train 输入数据,数据格式为N*dim,N代表数据组数,dim代表数据维度。
%T_train 输入标签数据
%ActiveF 为激活函数,如'sig','sin','hardlim','tribas'等。
%C为正则化系数
%输出: outWeight为输出权重
function OutWeight = DELMTrainWithInitial(InputWietht,P_train,T_train,ELMAEhiddenLayer,ActivF,C)
hiddenLayerSize = length(ELMAEhiddenLayer); %获取ELM-AE的层数
outWieght = {};%用于存放所有的权重
P_trainOrg = P_train;
count = 1;
%% ELM-AE提取数据特征
for i = 1:hiddenLayerSize
    Num = ELMAEhiddenLayer(i)*size(P_train,2);
    InputW = InputWietht(count:count+Num-1);
    count = count+Num;
    InputW = reshape(InputW,[ELMAEhiddenLayer(i),size(P_train,2)]);
    [~,B,Hnew] = ELM_AEWithInitial(InputW,P_train,ActivF,ELMAEhiddenLayer(i)); %获取权重
    OutWeight{i} = B';
    P_train =P_train*B'; %输入经过第一层后传递给下一层
end
%% 最后一层ELM进行监督训练
P = P_train;
N =size(P,2);
I = eye(N);
beta = pinv((P'*P+I/C))*P'*T_train;
OutWeight{hiddenLayerSize + 1} = beta; %存储最后一层ELM的信息。
end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]张文帅,王占刚.基于改进麻雀算法优化深度极限学习机的缺失数据预测[J].电子测量技术,2022,45(15):63-67.DOI:10.19651/j.cnki.emt.2209216.


🌈4 Matlab代码及文章讲解

链接:https://pan.baidu.com/s/1rjShcvq-OozdKoVLJvmg_g 

提取码:9ksb

--来自百度网盘超级会员V3的分享


相关文章
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
4天前
|
机器学习/深度学习 存储 算法
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
100 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
147 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
2天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
2天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
21小时前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
21小时前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
24 13
|
1月前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
1月前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。