面向高维优化问题的混沌粒子群混合蝴蝶优化算法(Matlab代码实现)

简介: 面向高维优化问题的混沌粒子群混合蝴蝶优化算法(Matlab代码实现)

💥1 概述

文献来源:


摘要:为了解决蝶形优化算法(BOA)容易出现精度低、收敛慢的问题,研究的趋势是将两种或多种算法混合,以获得优化问题领域的最优解。提出了一种新的混合算法,即HPSOBOA,并介绍了三种改进基本BOA的方法。因此,引入了使用立方一维映射的BOA初始化,并执行了非线性参数控制策略。此外,将粒子群优化(PSO)算法与BOA相结合,以改进全局优化的基本BOA。进行了两个实验(包括26个众所周知的基准函数)来验证所提出算法的有效性。实验的比较结果表明,与PSO、BOA和其他已知的群优化算法相比,混合HPSOBOA在高维数值优化问题中收敛速度快,稳定性更好。


关键词:蝶形优化算法(BOA);粒子群优化;立方图;非线性;高维度


📚2 运行结果

部分代码:

function func_plot_con(func_name)
[lb,ub,dim,fobj] = Hight_Get_Functions_details(func_name);
switch func_name 
    case 'F1' 
        x=-100:2:100; y=x; %[-100,100]        
    case 'F2' 
        x=-10:0.2:10; y=x; %[-10,10]        
    case 'F3' 
        x=-10:0.2:10; y=x; %[-10,10]        
    case 'F4' 
        x=-10:0.5:10; y=x; %[-10,10]
    case 'F5' 
        x=-10:0.5:10; y=x; %[-10,10]
    case 'F6' 
        x=-1.28:0.05:1.28; y=x; %[-1.28,1.28]
    case 'F7' 
        x=-10:0.5:10;  y=x;  %[-10,10]
    case 'F8' 
        x=-1:0.01:1;y=x; %[-1,1]
    case 'F9' 
        x=-10:0.1:10;   y=x; %[-10,10]    
    case 'F10' 
        x=-10:0.1:10;   y=x; %[-10,10]
    case 'F11' 
        x=-5.12:0.1:5.12;   y=x;  %[-5,10]
    case 'F12' 
        x=-5:0.05:5; y=x;  %[-5,5]
    case 'F13' 
        x=-100:2:100; y=x;  %[-100,100]
    case 'F14' 
        x=-100:2:100; y=x;  %[-100,100]
    case 'F15' 
        x=-10:0.1:10; y=x; %[-10,10]
    case 'F16' 
        x=-5.12:0.1:5.12; y=x; %[-50,50]
    case 'F17' 
        x=-5.12:0.1:5.12; y=x; %[-50,50]
    case 'F18' 
        x=-20:0.05:20; y=x; %[-20,20]
    case 'F19' 
        x=-600:5:600; y=x; %[-600,600]
    case 'F20' 
        x=-10:0.2:10; y=x; %[-10,10]      
    case 'F21' 
        x=-10:0.1:10; y=x; %[-50,50]
    case 'F22' 
        x=-5:0.05:5; y=x; %[-50,50]
    case 'F23' 
        x=-2:0.02:2; y=x; %[-5,5]     
    case 'F24' 
        x=-1:0.01:1; y=x; %[-1,1]
    case 'F25' 
        x=-20:0.2:20; y=x; %[-100,100]
    case 'F26' 
        x=-5:0.2:5; y=x; %[-10,10]
end    
L=length(x);
f=[];
for i=1:L
    for j=1:L
            f(i,j)=fobj([x(i),y(j)]);         
    end
end
surfc(x,y,f,'LineStyle','none');
% contour(x,y,f)
% colormap winter
colormap parula
% colormap autumn
% colormap summer
end


🌈3 Matlab代码及详细文章讲解

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

目录
打赏
0
0
0
0
78
分享
相关文章
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。
48 10
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
基于NSGAII的的柔性作业调度优化算法MATLAB仿真,仿真输出甘特图
本程序基于NSGA-II算法实现柔性作业调度优化,适用于多目标优化场景(如最小化完工时间、延期、机器负载及能耗)。核心代码完成任务分配与甘特图绘制,支持MATLAB 2022A运行。算法通过初始化种群、遗传操作和选择策略迭代优化调度方案,最终输出包含完工时间、延期、机器负载和能耗等关键指标的可视化结果,为制造业生产计划提供科学依据。
基于BBO生物地理优化的三维路径规划算法MATLAB仿真
本程序基于BBO生物地理优化算法,实现三维空间路径规划的MATLAB仿真(测试版本:MATLAB2022A)。通过起点与终点坐标输入,算法可生成避障最优路径,并输出优化收敛曲线。BBO算法将路径视为栖息地,利用迁移和变异操作迭代寻优。适应度函数综合路径长度与障碍物距离,确保路径最短且安全。程序运行结果完整、无水印,适用于科研与教学场景。
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等