基于蜻蜓优化算法的配电网重构求解(Python代码实现)【IEEE123节点算例】

简介: 基于蜻蜓优化算法的配电网重构求解(Python代码实现)【IEEE123节点算例】

1 概述

电力系统 (SEP) 不断扩展,以满足消费者对电能的需求。在这种情况下,配电系统扩展规划 (PESD) 的作用是确定配电网络扩展的指导方针。为此,有必要对馈线元件进行更改,例如在既定的规划范围内更换超过负载限制的导体,通过更改开关状态来更改馈线配置,以及其他确保连续性和质量的基本要素交付给客户的能量。鉴于上述情况,这项工作提出了一种规划配电系统的方法,该方法为一个非线性优化问题,该问题通过启发式蜻蜓优化算法来解决,该算法将与 OpenDSS 之间的集成一起开发,用于计算电力流和 Python 用于收集、修改馈线和显示结果。蜻蜓算法负责重新配置馈线,目标是最大限度地减少扩展成本和技术损失。所提出的方法在经过调整的 IEEE 123 节点馈线上进行了测试,该馈线是一个包含超过 123 个节点、多个开关、调节器、变压器等的测试网络。最后,重构方案比原来的扩容方案节省了22%,用蜻蜓算法模拟,30只蜻蜓,最大迭代次数等于25,展示了算法应用于配电系统时的有效性。


本文结构如下


第1章介绍了这项工作中应用的主要概念,以及一般目标、具体目标和理由。


第2章讨论了理论概念、特征和定义。尽管如此,还是介绍了文献中用于解决配电系统扩展规划的理论基础,应用于相关问题的优化技术,关于分布式发电机组和智能电网的简要讨论,强调了计算损失的理论技术分布式系统,并使用蜻蜓算法来解决所提出的问题。


第 3 章展示了用于解决所提出问题的材料和方法。从数据和计算资源以及建议的方法开始。第 4 章讨论了在实施所提出的方法中获得的结果,使用与 OpenDSS 集成的 Python 比较了没有重新配置的馈线与重新配置的测试系统的结果。最后,针对通过 蜻蜓算法进行重新配置的 IEEE 123 总线馈线,讨论了针对 IEEE 123 节点馈线无需重新配置的建议方法的实现。


最后,第 5 章讨论了结论和进一步工作的建议。


2 数学模型

详细数学模型及解释见第4部分。

蜻蜓优化算法这篇文章总结过:蜻蜓优化算法

3 算例

4 结论


本文解决配电系统扩展规划问题的建议,考虑到技术损失和扩展成本的最小化,通过重新配置馈线,通过蜻蜓算法 (DA) 算法。潮流计算由 OpenDSS 与 Python 集成执行,馈线重新配置由蜻蜓优化算法启发式确定。验证所提出方法的测试网络是在适配的 IEEE 123 总线馈线上进行的。无需重新配置的网络扩展称为 STO,重新配置的馈线扩展称为 STR。在执行的模拟中,启发式能够找到馈线中存在的开关的新配置,因此它达到了将扩展成本最小化 22% 的良好解决方案,与 STO 相比,技术损失平均增加了与 STO 系统相比 5%。获得的结果对于扩展规划方法很重要,可以重新配置支线以避免对线路进行加固,以符合特许公司工作计划制定的装载标准。此外,规划方法包括每公里成本,使提议的模型更接近现实。在 IEEE 123 节点的情况下,通过每年重新配置馈线,可以避免修改网络主分支的 3 条线路。这项工作还包括重新使用移除的导体来加强其他循环电流较低的线路,从而节省成本,仅产生运营成本。最后,通过 Dragonfly 重新配置馈线的方法,观察到馈线的有功功率降低了 1%,无功功率增加了 5%。对于配电线路负载问题,在这项工作中,应用了重新导体和重新配置技术,以最大限度地降低网络加固的成本。但是,可以应用其他技术来解决负载问题,例如:提高路段的电压水平、建造新的变电站等。因此,对于这些问题,可以应用该方法中提出的启发式方法,该方法被证明在寻找全局最小点方面是有效的。此外,为了使馈线更接近真实情况,可以通过 DA 分配电容器组,将技术损失转换为货币价值,以便更好地分析其代表的数量。  


部分理论引用网络文献,若有侵权请联系博主删除。  


👨‍🎓博主课外兴趣:中西方哲学,送予读者:


👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。在我这个专栏记录我有空时的一些哲学思考和科研笔记:科研和哲思。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“真理”上的尘埃吧。


    或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎


5 Python代码实现


相关文章
|
9天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
13天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
13天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
20天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
21 3
|
19天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
24天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
23天前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。
|
24天前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
24天前
|
存储 缓存 算法
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
20 1
|
25天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。