路径规划|多目标海洋捕食者算法(MOMPA)求解最短路径问题(Matlab代码实现)

简介: 路径规划|多目标海洋捕食者算法(MOMPA)求解最短路径问题(Matlab代码实现)

1 概述

本文提出了最近提出的海洋捕食者算法(MPA)的多目标版本,称为多目标海洋捕食者算法(MOMPA)。在此算法中,引入了一个外部归档组件来存储到目前为止找到的非主导帕累托最优解。基于精英选择方法,提出一种顶级捕食者选择机制,从档案中选择有效的解决方案作为顶级捕食者,模拟捕食者的觅食行为。利用CEC2019多模态多目标基准函数对所提算法的性能进行了评价,并与9种最先进的多目标元启发式算法进行了比较。此外,利用7个多目标工程设计问题(车侧撞击问题、齿轮系设计问题、焊接梁设计问题、盘式制动器设计问题、两条桁架设计问题、弹簧设计问题和悬臂梁设计问题)进一步验证了所提算法的有效性。结果表明,所提出的MOMPA算法不仅提供了非常有竞争力的结果,而且优于其他算法。


与单目标相比,多目标的最大优点是可以同时处理多个冲突目标,并获得一组帕累托最优解。解决方案集包含更有效的信息,可以为决策者提供更多的参考信息。与多目标算法相对应的单目标算法也相应发展起来。主要原因是单目标算法在解决复杂的多目标问题方面存在许多障碍。海洋捕食者算法(MPA)是Faramarzi等人最近提出的一种基于群智能的算法。该算法模拟了海洋捕食者的猎物狩猎行为,其中捕食者根据与猎物的相遇率,采用最优觅食策略。MPA算法具有参数少、计算速度快、计算精度高等特点,目前还没有多目标版本,因此可以考虑将其转换为多目标版本来解决多目标优化问题。各种多目标优化算法已在文献中列出,但根据NF定理,从逻辑上证明没有一种算法可以解决所有优化的问题,因此研究人员开发新的算法或增强现有算法的性能。该定理不仅适用于单目标优化算法,也适用于多目标优化算法。这也是这项工作的动机。基于海洋捕食者算法,提出一种新的多目标优化算法,即多目标海洋捕食者算法(MOMPA)。


2 海洋捕食者算法

本文结构如下:


1.存档组件集成到MPA中,以存储迄今为止发现的非主导帕累托最优解决方案。


2.提出一种顶级捕食者选择机制,从档案中选择相邻解数最少的解,并确定其作为群体搜索的指南。


3.通过使用上述两个组成部分,提出了MPA的多目标版本。


4.使用CEC2019多目标测试套件和七个工程设计问题评估了MOMPA的性能,并与几种最先进的多目标算法进行了比较。


本文的其余部分组织如下:第2节介绍了多目标优化问题的基本概念以及在多目标优化领域所做的相关研究工作。第3节介绍了海洋捕食者算法,并提出了一种多目标海洋捕食者算法。第4节介绍了多目标海洋捕食者算法。第5节介绍了结果和讨论。在第6节中,使用了七个工程示例来测试MOMPA的性能。此外,实验结果在第7节中进行了深入分析。最后,第8部分是对未来工作的总结和展望。


最近,Faramarzi等人提出了一种新的高效元启发式算法,称为海洋捕食者算法。该算法模仿海洋捕食者的行为,它们使用Levy和Brownian运动作为它们捕食猎物的最佳觅食机制。捕食者的觅食行为主要有三个阶段,根据捕食者和猎物之间的速度比不同而划分,Levy和Brownian运动将在这三个阶段交替进行,图1显示了捕食者三阶段觅食的示意图。当捕食者和猎物之间的速度比v很小,等于0.1时,捕食者的最佳失落策略是Levy运动,无论此时猎物是Levy运动还是布朗运动。此阶段是算法的探索阶段。当v近似等于1时,捕食者和猎物的速度相等,如果猎物以Levy步移,则捕食者以布朗步移。当速度比v大于10时,捕食者的最佳觅食策略是保持原位,而不管猎物的步长如何。


海洋捕食者具有很强的记忆力,使它们能够记住每次成功捕食的位置。此过程是通过在 MPA 中存储来实现的。迭代后,将每个解决方案与当前最佳解决方案进行比较,如果存在更好的解决方案,则将其替换为当前最佳解决方案。MPA 的算法流程如算法 2所示。

数学模型:

详细数学模型及解释见第4部分。

3 Matlab部分数值实验


参考文献


[1] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, An efficient approach to

nondominated sorting for evolutionary multiobjective optimization, IEEE

Transactions on Evolutionary Computation, 2015, 19(2): 201-213.

[2] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, A decision variable

clustering based evolutionary algorithm for large-scale many-objective

optimization, IEEE Transactions on Evolutionary Computation, 2018, 22(1):

97-112.


5 多目标海洋捕食者算法(MOMPA)求解旅行商问题

5.1 旅行商知识

这篇博客总结过,很详细:运筹学——图论与最短距离

5.2 运行结果

function Draw_Path(Path,X)
%{输入:待画路线  城市的坐标位置;输出:旅行商的路线}
R =  [Path(1,:) Path(1,1)]; % 一共有n个城市,但是这里R有n+1个值,是为了让路径最后再回到起点
A = X(R,:);            %根据R将坐标顺序存入A中
row = size(A,1);       %实际上row=n+1
%% 绘图
figure;
hold on
plot(X(:,1),X(:,2),'ro')   %X(:,1),X(:,2)分别代表的X轴坐标和Y轴坐标
for i = 2:row
    [arrowx,arrowy] = dsxy2figxy(gca,A(i-1:i,1),A(i-1:i,2));    %dsxy2figxy坐标转换函数,记录两个点
    annotation('textarrow',arrowx,arrowy,'HeadWidth',3,'color',[1,0,1]); %将这两个点连接起来
end
hold off
%% 绘制路线图
figure(2);
xlabel('横坐标x')
ylabel('纵坐标y')
title('旅行商轨迹图')
end


6 Matlab代码实现

相关文章
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
108 31
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。
基于GA遗传算法的拱桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现拱桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率要求(0.95≤ηq≤1.05),目标是使ηq尽量接近1,同时减少车辆数量和布载耗时。程序在MATLAB 2022A版本下运行,展示了工况1至工况3的测试结果。通过优化模型,综合考虑车辆重量、位置、类型及车道占用等因素,确保桥梁关键部位承受最大荷载,从而有效评估桥梁性能。核心代码实现了迭代优化过程,并输出最优布载方案及相关参数。
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
基于BBO生物地理优化的三维路径规划算法MATLAB仿真
本程序基于BBO生物地理优化算法,实现三维空间路径规划的MATLAB仿真(测试版本:MATLAB2022A)。通过起点与终点坐标输入,算法可生成避障最优路径,并输出优化收敛曲线。BBO算法将路径视为栖息地,利用迁移和变异操作迭代寻优。适应度函数综合路径长度与障碍物距离,确保路径最短且安全。程序运行结果完整、无水印,适用于科研与教学场景。

热门文章

最新文章