【负荷预测】基于蚂蚁优化算法的BP神经网络在负荷预测中的应用研究(Matlab完整代码实现)

简介: 【负荷预测】基于蚂蚁优化算法的BP神经网络在负荷预测中的应用研究(Matlab完整代码实现)

0 知识回顾

1 ACO-BP算法

传统的BP神经网络训练采用的是误差反向传播学习算法,它的优化目标函数相对复杂,较容易出现陷人局部最优、收敛速度慢等问题[6]。由于BP神经网络的训练算法实质上是对其网络权值和阈值进行迭代调整,因此用蚁群优化算法替代BP算法完成对神经网络权阈值的迭代调整,并最终完成神经网络的训练。


2 ACO-BP算法基本思路

蚁群算法解决优化问题的基本思路为:用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。路径较短的蚂蚁释放较多的信息素。经过一定时间,信息素浓度在较短的路径上累计较高,所有选择此路径的蚂蚁也逐渐增多,最终,整个蚁群会在正反馈的作用下集中在最佳路径上,此时对应的便是待优化问题的最优解。

首先根据权值和阈值的取值池间,将的E义以刘你以S个等长区间,即每个区间的长度被作s等分,将区间的临界值或选择区间中的随机值作为候选值。确定参数个数n,包括网络中所有的权阈值。每个参数Pi(i=1,2,…,n)对应个有S个元素的集合l, ,这些元素为Pi的可能取值。


3 具体步骤

1)参数初始化:将所有权值和阈值进行S等分,所有区间初始信息素О,信息素残留系教入,1后尽系代i,前区间信息表为Tabu,最大迭代次数C,网络全局误差E,最大学习次数N;

2)权值和阈值选择:蚁群m只蚂蚁,对于蚂蚁k依据概率公式(2)的寻路规则进行选择节点所在区间,蚁群迭代一次则完成一次解的构造:

       


式中为集合中第j个元素的信息素值;

3)蚁群寻优判断:蚁群迭代一次得到的构造解,则是当前迭代后得到误差最小的一组解,计算误差Ec ,判断是否达到蚁群要求,若是则转到4),否则转到5);

4)网络训练:将蚁群迭代得到的最优构造解,作为初始权值和阈值,选取数据集对网络进行训练,直到满足结束条件即最大学习次数,完成学习。否则,继续学习;

5)更新信息素:根据式(3)、式( 4)、式(5)对所有区间信息素全局更新,并重置信息表:

             

6)蚁群遍历:重复步骤2)到步骤3)。其算法如图1所示。

         

                              图1 ACO-BP算法流程图

4 Matlab代码实现

主函数

%% 清空环境变量
clc
clear
close all
format compact 
%% 网络结构建立
%% 清空环境变量
clc
clear
close all
format compact 
%% 网络结构建立
%读取数据
data=xlsread('天气_电量_数据.xlsx','C12:J70');%前7列为每个时刻的发电量 最后列为天气
for i=1:58
    input(i,:)=[data(i,:) data(i+1,end)];
    output(i,:)=data(i+1,1:7);
end
%% 节点个数
inputnum=9;%输入 前一天7个时刻的电量+前一天的天气+预测日的天气
hiddennum=5;
outputnum=7;%预测日7个时刻的发电量
%% 训练数据和预测数据 最后一天用来测试  前面的都拿来训练
input_train=input(1:57,:)';
input_test=input(58,:)';
output_train=output(1:57,:)';
output_test=output(58,:)';
%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
inputn_test=mapminmax('apply',input_test,inputps);
%%
%构建网络
net=newff(inputn,outputn,hiddennum);
%寻优
[bestnest,trace]=antforelm(inputnum,hiddennum,outputnum,net,inputn,outputn);
figure
plot(trace)
title('适应度曲线')
xlabel('迭代数')
ylabel('适应度值')
%% 把最优初始阀值权值赋予网络预测
x=bestnest;
% 用CS优化的BP网络进行值预测
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2';
%% BP网络训练
%网络进化参数
net.trainParam.epochs=200;
net.trainParam.lr=0.1;
%net.trainParam.goal=0.00001;
%网络训练
[net,per2]=train(net,inputn,outputn);
%% BP网络预测
%数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
an=sim(net,inputn_test);
test_simu=mapminmax('reverse',an,outputps);
error=test_simu-output_test;
%%
figure
a1=output_test;
a2=test_simu;
plot(a1,'*-');hold on
plot(a2,'O-')
title('各时刻发电量实际值与预测值')
xlabel('')
legend('原始数据','bp预测数据')
set(gca,'XTick',1:7,...                                    
        'XTickLabel',{'9:00','10:00','11:00','12:00','13:00','14:00','15:00'},...
        'TickLength',[0 0]);
grid on
ylabel('发电量(KW)')


5 运行结果

6 参考文献

[1]陈智雨,陆金桂.基于ACO-BP神经网络的光伏系统发电功率预测[J].机械制造与自动化,2020,49(01):173-175+187.DOI:10.19344/j.cnki.issn1671-5276.2020.01.047.


7 写在最后

部分理论引用网络文献,如有侵权请联系删除。


相关文章
|
4天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
2天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
23小时前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
6天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
24天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
62 17
|
1月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
51 10
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
61 10
|
1月前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。
|
1月前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。
下一篇
开通oss服务