💥1 概述
车辆纵向动力学方面包括车辆传动系统换挡控制、制动系统的设计与控制以及车辆状态的参数估计;车辆横向动力学方面涉及车辆转向系统设计与横向稳定性控制;车辆垂向动力学方面包括悬架系统的优化设计与半/主动控制.专刊研究成果涉及车辆动力学与控制方向的多种问题,可为今后开展相关研究提供参考。
📚2 运行结果
🎉3 参考文献
[1]李韶华,王伟达.车辆动力学与控制研究进展[J].动力学与控制学报,2021,19(03):1-4.
👨💻4 Matlab代码
主函数部分代码:
clear all clc %% Define Given Constants Cx = .35; %[-] Aerodynamic Drag Coefficient S = 1.82; %[m^2] Frontal Surface Area m = 970; %[kg] Vehicle's Mass Vcil = 1040; %[cm^3] Volume of Cylinder Tf = .281; %[-] Differentail Transmission Ratio wmin = 850; %[rpm] Minimum Engine Rotaional Speed efficiencyt = .9; %[-] Efficiency of Powertrain l = 2.3; %[m] Wheel Base a = 1.15; %[m] Horizontal Distance From Center of Gravity -> Front Wheel b=l-a; % [m] Horizontal Distance From Center of Gravity -> Rear Wheel hG = .5; %[m] Height of Center of Gravity wheel_indication = '155/65R13'; % Wheel Incdication R0 = 13*25.4/2 + .65*155; %[mm] % Wheel Radius Re = .98*R0*10^-3; % [m] % Wheel Effective Radius N = 5; %[-] % Number of Gears ts = 1; %[s] % Time of Shifting Between Gears Je = .08; %[kg.m^2] Engine's Moment of Inertia Jw = 1.6; %[kg.m^2] Wheels' Moment of Inertia Jt = Jw; %[kg.m^2] Transmission's Moment of Inertia g = 9.81; % [m/s^2] Gravitational Constant ro = 1.3; %[kg/m^2] Air Density alpha = atan(0:0.1:0.4); %[-] Angle of Inclination f0 = .013; %[-] Rolling Resistance Coefficient 1 K = 6.51*10^-6; %[s^2/m^2] Rolling Resistance Coefficient 2 %% POWER NEEDED FOR MOTION % Take Artbitrary Velocity Interval vKm = 0:10:300; %[km/h] vm = (vKm./3.6); %[m/s] % Declare All Vectors/Matrices As Zeros A = zeros(5, 1); B = zeros(5, 1); R = zeros(5, 31); Pn = zeros(5, 31); Pnorm = zeros(5, 31); Pcar = zeros(5, 1); Vcar = zeros(5, 1); Av = zeros(5, 31); Bv3 = zeros(5, 31); % Calculate A, B, Vcar, Pcar, R, Av, Bv^3, Pn, Pnorm and Vnorm at 5 % different inclinations for i = 1:5 A(i) = m*g*(f0*cos(alpha(i)) + sin(alpha(i))); %[N] B(i) = m*g*K*cos(alpha(i)) + 0.5*ro*S*Cx; %[kg/m] Vcar(i) = sqrt(A(1)/B(1)); %[m/s] Pcar(i) = 2*A(i)*sqrt(A(i)/B(i)); %[W] for j = 1:31 R(i, j) = A(i) + B(i)*(vm(j)^2); %[N] Av(i, j) = A(i)*vm(j); %[W] Bv3(i, j) = B(i)*vm(j)^3; %[W] Pn(i, j) = Av(i, j) + Bv3(i, j); %[W] Pnorm(i, j) = Pn(i, j)/Pcar(i); %[-] end