基于日特征气象因素的支持向量机预测电力负荷(Matlab代码实现)

简介: 基于日特征气象因素的支持向量机预测电力负荷(Matlab代码实现)

🍁🥬🕒摘要🕒🥬🍁

本文选取基于日特征气象因素的支持向量机预测方法,用Matlab编制模型的算法程序,从数据集中选取若干天数的历史数据作为模型的训练集,其余的数据作为测试集,模型最终能够实现对测试集中不同日期的负荷大小预测。


✨🔎⚡运行结果⚡🔎✨

 

💂♨️👨‍🎓Matlab代码👨‍🎓♨️💂

%% 清空环境变量
close all;
clear all;
clc;
format compact;
%% 数据的提取和预处理
data=xlsread('筛选后数据');
ts =  data((1:320),1);%训练集输出
tsx = data((1:320),2:end);%训练集输入
tts=data((321:end),1);%预测集输出
ttx= data((321:end),2:end);%预测集输入
% 数据预处理,将原始数据进行归一化
ts = ts';
tsx = tsx';
tts=tts';
ttx=ttx';
% mapminmax为matlab自带的映射函数    
% 对ts进行归一化
[TS,TSps] = mapminmax(ts,-1,1);    %矢量归一化
[TTS,TTSps]= mapminmax(tts,-1,1);
TS = TS';
TTS=TTS';
% mapminmax为matlab自带的映射函数
% 对tsx进行归一化
[TSX,TSXps] = mapminmax(tsx,-1,1);    %特征值归一化
[TTX,TTXps] = mapminmax(ttx,-1,1);    
% 对TSX进行转置,以符合libsvm工具箱的数据格式要求
TSX = TSX';
TTX = TTX';
%% 选择回归预测分析最佳的SVM参数c&g
% 进行参数选择: 
[bestmse,bestc,bestg] = SVMcgForRegress(TS,TSX,-10,10,-10,10);
% 打印参数选择结果
disp('打印参数选择结果');
str = sprintf( 'Best Cross Validation MSE = %g Best c = %g Best g = %g',bestmse,bestc,bestg);
disp(str);
%% 利用回归预测分析最佳的参数进行SVM网络训练
cmd = ['-c ', num2str(bestc), ' -g ', num2str(bestg) , ' -s 3 -p 0.01'];
model = svmtrain(TS,TSX,cmd);
%% SVM网络回归预测
[predict,mse] = svmpredict(TS,TSX,model);
[predict_2,mse_2] = svmpredict(TTS,TTX,model);
predict = mapminmax('reverse',predict',TSps);
predict_2 = mapminmax('reverse',predict_2',TTSps);
predict = predict';
predict_2 =predict_2'
% 均方根误差计算
N = length(tts);
RMSE = sqrt((sum((tts-predict_2').^2))/N)
% % 相关系数
% N = length(tts);
% YUCE_R2 = (N*sum(predict_2'.*tts)-sum(predict_2)*sum(tts))^2/((N*sum((predict_2).^2)-(sum(predict_2'))^2)*(N*sum((tts).^2)-(sum(tts))^2))
%% 结果分析(测试集)
figure;
plot(tts,'-o');
hold on;
plot(predict_2,'r-^');
legend('实际负荷','预测负荷');
hold off;
title('SVM预测输出图','FontSize',12);
xlabel('2019年11月20日-2019年12月30日','FontSize',12);
ylabel('负荷(KW)','FontSize',12);

📜📢🌈参考文献🌈📢📜

[1]梁静.互信息和改进支持向量机在电力负荷预测中的应用[J].红水河,2022,41(04):108-112.

相关文章
|
3月前
|
数据采集 算法 数据挖掘
【场景削减】基于DBSCAN密度聚类风电-负荷确定性场景缩减方法(Matlab代码实现)
【场景削减】基于DBSCAN密度聚类风电-负荷确定性场景缩减方法(Matlab代码实现)
140 0
|
3月前
|
机器学习/深度学习 数据采集 算法
【信号识别】识别半监督粗糙模糊拉普拉斯特征图(Matlab代码实现)
【信号识别】识别半监督粗糙模糊拉普拉斯特征图(Matlab代码实现)
|
3月前
|
监控
基于MATLAB/Simulink的单机带负荷仿真系统搭建
使用MATLAB/Simulink平台搭建一个单机带负荷的电力系统仿真模型。该系统包括同步发电机、励磁系统、调速系统、变压器、输电线路以及不同类型的负荷模型。
472 5
|
3月前
|
机器学习/深度学习 数据采集 边缘计算
相关向量机和特征选取技术在短期负荷预测中的应用(Matlab代码实现)
相关向量机和特征选取技术在短期负荷预测中的应用(Matlab代码实现)
|
3月前
|
机器学习/深度学习 数据采集 算法
基于VMD-LSTM的电力负荷预测研究(Matlab代码实现)
基于VMD-LSTM的电力负荷预测研究(Matlab代码实现)
278 0
|
3月前
|
机器学习/深度学习 资源调度 监控
【状态估计】基于UKF、AUKF的电力系统负荷存在突变时的三相状态估计研究(Matlab代码实现)
【状态估计】基于UKF、AUKF的电力系统负荷存在突变时的三相状态估计研究(Matlab代码实现)
204 0
|
3月前
|
算法 大数据 调度
【复现】【充换电站】考虑用户充电负荷-最优分时电价互动的光储充换电站优化模型研究(Matlab代码实现)
【复现】【充换电站】考虑用户充电负荷-最优分时电价互动的光储充换电站优化模型研究(Matlab代码实现)
143 0
|
3月前
|
机器学习/深度学习 数据采集 人工智能
含可再生能源的配电网最佳空调负荷优化控制研究(Matlab代码实现)
含可再生能源的配电网最佳空调负荷优化控制研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
233 0
|
2月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
119 0

热门文章

最新文章