AI谱曲 | 基于RWKV的最佳开源AI作曲模型魔搭推理实践

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: AI谱曲 | 基于RWKV的最佳开源AI作曲模型魔搭推理实践

RWKV-4-Music开源直链

模型下载

BlinkDL/rwkv-4-music · Hugging Face

Python代码:

https://github.com/BlinkDL/ChatRWKV/tree/main/music

训练MIDI数据集:

https://huggingface.co/datasets/breadlicker45/bread-midi-dataset

模型链接:

https://modelscope.cn/models/AI-ModelScope/rwkv-4-world/summary

https://modelscope.cn/models/AI-ModelScope/rwkv-4-music/summary

创空间体验链接:

https://modelscope.cn/studios/AI-ModelScope/RWKV-4-Music/summary

https://modelscope.cn/studios/BlinkDL/RWKV-CHN-PRO/summary

RWKV-4-Music模型推理

模型的推理过程分为两步:

1、使用RWKV-4-Music音乐生成模型, 以类似于文本生成的方式生成一长串编码着乐器, 音符, 时长等信息的字符串, 并将字符串保存入txt文件;

2、将txt文件转换wav文件:

  1. 首先将txt文件转成midi格式文件. midi格式是一种数字音乐标准, 是一种通用的音乐文件格式. midi格式文件并不包含声音文件本身, 而是包含一组描述如何播放声音的指令.

  1. 使用midi2audio的python包将midi格式转成wav格式.

当然推理的步骤可能略为繁琐, 我们也提供了创空间平台, 便于大家进行模型体验:

https://modelscope.cn/studios/AI-ModelScope/RWKV-4-Music/summary

以下推理所需的资料可以直接从创空间的git中方便的获取. 或者你也可以从下面提供的网址中进行下载.

请注意: 以下的推理运行需要linux系统环境下进行.

# 安装git, git-lfs. 这里提供两种方式
sudo apt install git git-lfs  # 使用apt安装
# conda install git git-lfs -c conda-forge  # 使用conda安装
git clone http://www.modelscope.cn/studios/AI-ModelScope/RWKV-4-Music.git

1. 生成txt文件

首先, 我们需要准备运行的环境

pip install rwkv tqdm mido midi2audio requests certifi -U
# 安装fluidsynth软件包, 在midi->wav的时候需要. 我们给出了两种安装方式. 
sudo apt install fluidsynth  # 使用apt安装
# conda install fluidsynth -c conda-forge  # 使用conda安装

以下的推理代码参考了作者的github仓库:

https://github.com/BlinkDL/ChatRWKV/blob/main/music/run.py

相关包的导入

import os
import torch
from rwkv.model import RWKV
from rwkv.utils import PIPELINE
from tqdm import tqdm
from modelscope import snapshot_download

使用modelscope的snapshot_download函数下载模型, 并载入.

下载的文件夹中包含120M和560M的模型. 我们使用560M的模型.

model_dir = snapshot_download('AI-ModelScope/rwkv-4-music', revision='v1.0.1')
ckpt_120M_fname = "RWKV-4-MIDI-120M-v1-20230714-ctx4096.pth"
ckpt_560M_fname = "RWKV-4-MIDI-560M-v1-20230717-ctx4096.pth"
ckpt_fpath = os.path.join(model_dir, ckpt_560M_fname)
# tokenizer-midi.json文件下载路径: https://github.com/BlinkDL/ChatRWKV/blob/main/music/tokenizer-midi.json
tokenizer_fpath = "tokenizer-midi.json"
model = RWKV(model=ckpt_fpath, strategy='cuda fp32')
model.eval()
pipeline = PIPELINE(model, tokenizer_fpath)

定义一些参数

# e.g. 
# input_text = 'v:5b:3 v:5b:2 t125 t125 t125 t106 pi:43:5 t24 pi:4a:7 t15 pi:4f:7 t17 pi:56:7 t18 pi:54:7 t125 t49 pi:51:7 t117 pi:4d:7 t125 t125 t111 pi:37:7 t14 pi:3e:6 t15 pi:43:6 t12 pi:4a:7 t17 pi:48:7 t125 t60 pi:45:7 t121 pi:41:7 t125 t117 s:46:5 s:52:5 f:46:5 f:52:5 t121 s:45:5 s:46:0 s:51:5 s:52:0 f:45:5 f:46:0 f:51:5 f:52:0 t121 s:41:5 s:45:0 s:4d:5 s:51:0 f:41:5 f:45:0 f:4d:5 f:51:0 t102 pi:37:0 pi:3e:0 pi:41:0 pi:43:0 pi:45:0 pi:48:0 pi:4a:0 pi:4d:0 pi:4f:0 pi:51:0 pi:54:0 pi:56:0 t19 s:3e:5 s:41:0 s:4a:5 s:4d:0 f:3e:5 f:41:0 f:4a:5 f:4d:0 t121 v:3a:5 t121 v:39:7 t15 v:3a:0 t106 v:35:8 t10 v:39:0 t111 v:30:8 v:35:0 t125 t117 v:32:8 t10 v:30:0 t125 t125 t103 v:5b:0 v:5b:0 t9 pi:4a:7'
input_text = ''
only_piano = False
max_length = 512
max_length = min(max_length, 4096)
temperature = 1
top_k = 8
top_p = 0.8
#
txt_fpath = 'midi.txt'
midi_fpath = 'midi_bin.midi'
wav_fpath = 'wav_bin.wav'

进行模型的推理和文本生成

input_text = input_text.strip()
input_text = f'<pad> {input_text}'
output_text = '<start>'
#
occurrence = {}
state = None
for i in tqdm(range(max_length)):
    if i == 0:
        out, state = model.forward(pipeline.encode(input_text), state)
    else:
        out, state = model.forward([token], state)
    #
    for n in occurrence:
        out[n] -= (0 + occurrence[n] * 0.5)
    out[0] += (i - 2000) / 500  # try not to be too short or too long
    out[127] -= 1  # avoid "t125"
    #
    if only_piano:
        out[128:12416] -= 1e10
        out[13952:20096] -= 1e10
    # find the best sampling for your taste
    token = pipeline.sample_logits(
        out, temperature=temperature, top_k=top_k, top_p=top_p)
    if token == 0:
        break
    for n in occurrence:
        occurrence[n] *= 0.997  # decay repetition penalty
    if token >= 128 or token == 127:
        occurrence[token] = 1 + \
            (occurrence[token] if token in occurrence else 0)
    else:
        occurrence[token] = 0.3 + \
            (occurrence[token] if token in occurrence else 0)
    output_text += f" {pipeline.decode([token])}"
output_text += ' <end>'

将生成的文本写入txt文件

with open(txt_fpath, "w") as f:
    f.write(output_text)

2. txt文件 -> wav文件

当然以下的步骤可能比较繁琐, 我们也可以使用创空间提供的txt -> wav的功能方便的进行格式转换.

https://modelscope.cn/studios/AI-ModelScope/RWKV-4-Music/summary

txt文件 -> midi文件

# midi_util文件下载: https://github.com/briansemrau/MIDI-LLM-tokenizer/blob/main/midi_util.py
# vocab_config文件下载: https://github.com/briansemrau/MIDI-LLM-tokenizer/blob/main/vocab_config.json
import midi_util
from midi_util import VocabConfig
def txt_to_midi(text_fpath: str, output_fpath: str):
    vocab_config = "vocab_config.json"
    cfg = VocabConfig.from_json(vocab_config)
    with open(text_fpath, "r") as f:
        text = f.read()
    text = text.strip()
    mid = midi_util.convert_str_to_midi(cfg, text)
    mid.save(output_fpath)
txt_to_midi(txt_fpath, midi_fpath)

midi文件 -> wav文件

# 这里的.sf2文件下载路径: https://github.com/vyshor/MusicAids/blob/master/default_sound_font.sf2
from midi2audio import FluidSynth
def midi_to_wav(midi_path: str, wav_path: str) -> None:
    # 设置音源,你需要下载一个.sf2文件,这是一个音源文件
    fs = FluidSynth('default_sound_font.sf2')
    fs.midi_to_audio(midi_path, wav_path)
midi_to_wav(midi_fpath, wav_fpath)

然后我们就获得了wav_bin.wav的音频文件, 听一下我们产生的音频啦!!!

效果展示

我们录制了一段魔搭创空间的创作效果,来感受一下AI作曲的创作能力叭!


image.png

(魔搭创空间操作指引,下方阅读原文可直达)

https://modelscope.cn/studios/AI-ModelScope/RWKV-4-Music/summary

原始input曲谱:

image.png

魔搭创空间推荐2组参数生成曲谱效果,看看大家喜欢哪组呢:

only piano:true,max length:512,temperature:1,top_k:8,top_p:0.8

image.png

01:03

only piano:false,max length:512,temperature:1,top_k:10,top_p:0.8

image.png

相关文章
|
28天前
|
机器学习/深度学习 人工智能 并行计算
"震撼!CLIP模型:OpenAI的跨模态奇迹,让图像与文字共舞,解锁AI理解新纪元!"
【10月更文挑战第14天】CLIP是由OpenAI在2021年推出的一种图像和文本联合表示学习模型,通过对比学习方法预训练,能有效理解图像与文本的关系。该模型由图像编码器和文本编码器组成,分别处理图像和文本数据,通过共享向量空间实现信息融合。CLIP利用大规模图像-文本对数据集进行训练,能够实现zero-shot图像分类、文本-图像检索等多种任务,展现出强大的跨模态理解能力。
77 2
|
13天前
|
机器学习/深度学习 人工智能 算法
整合海量公共数据,谷歌开源AI统计学专家DataGemma
【10月更文挑战第28天】谷歌近期开源了DataGemma,一款AI统计学专家工具,旨在帮助用户轻松整合和利用海量公共数据。DataGemma不仅提供便捷的数据访问和处理功能,还具备强大的数据分析能力,支持描述性统计、回归分析和聚类分析等。其开源性质和广泛的数据来源使其成为AI研究和应用的重要工具,有助于加速研究进展和推动数据共享。
42 6
|
13天前
|
存储 人工智能 SEO
全开源免费AI网址导航网站源码
Aigotools 可以帮助用户快速创建和管理导航站点,内置站点管理和自动收录功能,同时提供国际化、SEO、多种图片存储方案。让用户可以快速部署上线自己的导航站。
31 1
|
20天前
|
人工智能 运维 Serverless
Serverless GPU:助力 AI 推理加速
近年来,AI 技术发展迅猛,企业纷纷寻求将 AI 能力转化为商业价值,然而,在部署 AI 模型推理服务时,却遭遇成本高昂、弹性不足及运维复杂等挑战。本文将探讨云原生 Serverless GPU 如何从根本上解决这些问题,以实现 AI 技术的高效落地。
|
20天前
|
人工智能
AI科学家太多,谁靠谱一试便知!普林斯顿新基准CORE-Bench:最强模型仅有21%准确率
【10月更文挑战第21天】普林斯顿大学研究人员提出了CORE-Bench,一个基于计算可重复性的AI代理基准,涵盖计算机科学、社会科学和医学领域的270个任务。该基准旨在评估AI代理在科学研究中的准确性,具有多样性、难度级别和现实相关性等特点,有助于推动AI代理的发展并提高计算可重复性。
39 4
|
13天前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多种配置选项,包括CPU+GPU、CPU+FPGA等组合,支持高性能计算需求。本文汇总了阿里云GPU服务器的价格信息,涵盖NVIDIA A10、V100、T4、P4、P100等多款GPU卡,适用于人工智能、机器学习和深度学习等场景。详细价格表和实例规格见文内图表。
|
29天前
|
人工智能 NoSQL 机器人
MongoDB Atlas与YoMio.AI近乎完美适配:推理更快速、查询更灵活、场景更丰富
随着MongoDB的新发布和革新,YoMio.AI的“闪电式发展”值得期待。
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
26 1
|
5天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
28 10

热门文章

最新文章