基于BP神经网络、RBF神经网络以及PSO优化的RBF神经网络进行数据的预测(Matlab代码实现)

简介: 基于BP神经网络、RBF神经网络以及PSO优化的RBF神经网络进行数据的预测(Matlab代码实现)

1 概述

   RBF神经网络结构一般包含输入层、隐含层和神经网络的输出层11。RBF神经网络将复杂的非线性问题转化为高维特征空间,使问题转化为线性可分,避免了局部最小的问题,需要更多的隐层神经元。RBF神经网络结构如图1所示。


2 运行结果

2.1 BP神经网络

2.2 RBF



2.3 PSO-RBF

部分代码:

粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;
popcount=10;   %粒子数
poplength=6;  %粒子维数
Wstart=0.9;%初始惯性权值
Wend=0.2;%迭代次数最大时惯性权值
%个体和速度最大最小值
Vmax=1;
Vmin=-1;
popmax=4;
popmin=-4;
%粒子位置速度和最优值初始化
for i=1:popcount
    pop(i,:)=rand(1,9);%初始化粒子位置
    V(i,:)=rand(1,9);%初始化粒子速度
    %计算粒子适应度值
    Center=pop(i,1:3);
    SP=pop(i,4:6); 
    W=pop(i,7:9);
    Distance=dist(Center',SamIn);
    SPMat=repmat(SP',1,SamNum);%repmat具体作用
    UnitOut=radbas(Distance./SPMat);%径向基函数
    NetOut=W*UnitOut;%网络输出
    Error=SamOut-NetOut;%网络误差
    %SSE=sumsqr(Error);
    %fitness(i)=SSE;
    RMSE=sqrt(sumsqr(Error)/SamNum);
    fitness(i)=RMSE;
    %fitness(i)=fun(pop(i,:));
end
%适应度函数(适应度值为RBF网络均方差)
[bestfitness bestindex]=min(fitness);
gbest=pop(bestindex,:);%全局最优值
pbest=pop;%个体最优值
pbestfitness=fitness;%个体最优适应度值
gbestfitness=bestfitness;%全局最优适应度值
%迭代寻优
for i=1:MaxEpoch
   Vmax=1.00014^(-i);
   Vmin=-1.00014^(-i);
    for j=1:popcount
       % if (fitness(j)<gbestfitness|fitness==gbestfitness)
           % S(j)=0;
        %end
        %S(j)=1-(fitness(j)/100)^2;
       % GW(j)=Wstart-S(j)*(Wstart-Wend);
       % GW(j)=Wend+(GW(j)-Wend)*(MaxEpoch-i)/MaxEpoch;
        GW=Wstart-(Wstart-Wend)*i/MaxEpoch;
        %速度更新(第一种方法精度最高)
        V(j,:) = 1.000009^(-i)*(gbestfitness/fitness(j)+2)*rand*V(j,:) + c1*rand*(pbest(j,:) - pop(j,:)) + c2*rand*(gbest - pop(j,:));
        %V(j,:) = GW*((fitness(j)/2000)^2+1)*rand*V(j,:) + c1*rand*(pbest(j,:) - pop(j,:)) + c2*rand*(gbest - pop(j,:));
        %V(j,:) = GW*V(j,:) + c1*rand*(pbest(j,:) - pop(j,:)) + c2*rand*(gbest - pop(j,:));
        %V(j,:) = 0.9*V(j   ,:) + c1*rand*(pbest(j,:) - pop(j,:)) + c2*rand*(gbest - pop(j,:));
        %V(j,:) = 0.9*1.0003^(-j)* V(j,:) + c1*rand*(pbest(j,:) - pop(j,:)) + c2*rand*(gbest - pop(j,:));
        %V(j,:) = (gbestfitness/(exp(-fitness(j))+1)+0.5)*rand*V(j,:) + c1*rand*(pbest(j,:) - pop(j,:)) + c2*rand*(gbest - pop(j,:));
        V(j,find(V(j,:)>Vmax))=Vmax;
        V(j,find(V(j,:)<Vmin))=Vmin;
        %粒子更新
        pop(j,:)=pop(j,:)+0.5*V(j,:);
        pop(j,find(pop(j,:)>popmax))=popmax;
        pop(j,find(pop(j,:)<popmin))=popmin;
        %计算粒子适应度值
        Center=pop(j,1:3);
        SP=pop(j,4:6); 
        W=pop(j,7:9);
        Distance=dist(Center',SamIn);
        SPMat=repmat(SP',1,SamNum);%repmat具体作用
        UnitOut=radbas(Distance./SPMat);
        NetOut=W*UnitOut;%网络输出
        Error=SamOut-NetOut;%网络误差
        %SSE=sumsqr(Error);
        %fitness(j)=SSE;
        RMSE=(sumsqr(Error)/SamNum);
        fitness(j)=RMSE;
       % Center=pop(j,1:10);
       % SP=pop(j,11:20);
       % W=pop(j,21:30);
       % fitness(j)=fun(pop(j,:));
    end
    for j=1:popcount
        %个体最优更新
        if fitness(j) < pbestfitness(j)
            pbest(j,:) = pop(j,:);
            pbestfitness(j) = fitness(j); 
        end
        %群体最优更新
        if fitness(j) < gbestfitness
            gbest = pop(j,:);
            gbestfitness = fitness(j);
        end
    end
    gbesthistory=[gbesthistory,gbest];
    %mse(i)=gbestfitness;
    %将群体最优值赋给RBF参数
    Center=gbest(1,1:3);
    SP=gbest(1,4:6); 
    W=gbest(1,7:9);
    %Center=gbest(1,1:5);
    %SP=gbest(1,11:20); 
    % W=gbest(1,21:30);
     Distance=dist(Center',SamIn);
     SPMat=repmat(SP',1,SamNum);%repmat具体作用
     UnitOut=radbas(Distance./SPMat);
     NetOut=W*UnitOut;%网络输出
     Error=SamOut-NetOut;%网络误差
     %sse(i)=sumsqr(Error);
     mse(i)=(sumsqr(Error)/SamNum);
   % sse(i)=fun(gbest);
   %if sse(i)<E0,break,end 
end
toc;
% 测试 
Center=gbest(1,1:3);
SP=gbest(1,4:6); 
W=gbest(1,7:9);
TestDistance=dist(Center',TargetIn);
TesatSpreadsMat=repmat(SP',1,TargetSamNum);
TestHiddenUnitOut=radbas(TestDistance./TesatSpreadsMat);
TestNNOut=W*TestHiddenUnitOut;
%作图 分别在训练集和测试集上
subplot(1,2,1)
plot(1:length(NetOut),NetOut,'*',1:length(NetOut),SamOut,'o')
title('In Train data')
subplot(1,2,2)
plot(1:3,TestNNOut,'*',1:3,TargetOut,'o')
title('In Test data')
%求出误差 训练集和测试集
train_error=sum(abs(SamOut-NetOut))/length(SamOut);
test_error=sum(abs(TargetOut-TestNNOut))/length(TargetOut);


3 参考文献

[1]王媛媛.基于改进PSO优化RBF神经网络的温室温度预测研究[J].计算机与数字工程,2016,44(07):1210-1215.


[2]向昭君. 群智能算法优化RBF神经网络的研究与应用[D].兰州大学,2016.DOI:10.27204/d.cnki.glzhu.2016.000078.


4 Matlab代码实现

相关文章
|
27天前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
109 2
|
1月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
1月前
|
机器学习/深度学习 缓存 算法
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
302 1
|
1月前
|
算法 数据挖掘 区块链
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
|
1月前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
230 0
|
2月前
|
机器学习/深度学习 数据采集 传感器
【故障诊断】基于matlab BP神经网络电机数据特征提取与故障诊断研究(Matlab代码实现)
【故障诊断】基于matlab BP神经网络电机数据特征提取与故障诊断研究(Matlab代码实现)
|
1月前
|
机器学习/深度学习 传感器 算法
【表面粗糙度】基于粒子群PSO算法优化-BP神经网络的表面粗糙度研究(Matlab代码实现)
【表面粗糙度】基于粒子群PSO算法优化-BP神经网络的表面粗糙度研究(Matlab代码实现)
171 7
|
1月前
|
机器学习/深度学习 传感器 分布式计算
基于模糊RBF神经网络轨迹跟踪研究(Matlab代码实现)
基于模糊RBF神经网络轨迹跟踪研究(Matlab代码实现)
123 1
|
1月前
|
机器学习/深度学习 移动开发 编解码
基于人工神经网络的类噪声环境声音声学识别(Matlab代码实现)
基于人工神经网络的类噪声环境声音声学识别(Matlab代码实现)
|
1月前
|
机器学习/深度学习 算法 数据可视化
PINN物理信息神经网络用于求解二阶常微分方程(ODE)的边值问题研究(Matlab代码实现)
PINN物理信息神经网络用于求解二阶常微分方程(ODE)的边值问题研究(Matlab代码实现)
199 6

热门文章

最新文章