将OSS里的 Stable diffusion 模型库挂载到PAI-EAS并部署推理

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 本文将会介绍如何一键转存模型库到自己的对象存储OSS空间中,并给出将OSS挂载到PAI-EAS实现部署,并对模型进行灵活切换与推理。

步骤一:通过《Stable Diffusion 模型库,AIGC 画风任你选》活动页面转存模型文件

如果您已经通过活动页面将SD模型库文件转存到了自己的OSS Bucket中,请跳过步骤一。

进入《Stable diffusion模型库,AIGC画风任你选》页面活动,在方案1:使用对象存储 OSS 作为模型库存储空间处单击一键复制

image.png

  1. 单击一键复制按钮后,将会弹出公共库转存信息对话框,输入新建对象存储OSS Bucket名称,此处示例填写osstestforsd;地域请从杭州,上海,北京,乌兰察布这四个Region选择,此处选择华东2(上海);签署转存的授权协议;最后单击确认转存

image.png

  1. 确认转存后几秒钟,将会弹出文件框提示转存成功,记录对象存储OSS Bucket名称为 osstestforsd

  1. 前往对象存储OSS控制台,确认您刚才转存的模型文件。在Bucket列表找并单击osstestforsd

进入Bucket的文件管理-文件列表处,然后逐个单击文件夹,进入/data-oss/models的目录,可以看到模型文件已经转存进来。

步骤二:将OSS模型库挂载到PAI-EAS并部署模型

您已经将SD模型库的Stable Diffusion模型文件转存到了自己的对象存储OSS中,该存储空间中的模型可以被用于SDWebUI,另外也可以将未来训练和推理的结果保存到该OSS Bucket目录中。您可以通过如下文件挂载方式来实现。

  1. 前往PAI控制台。开通机器学习PAI并创建默认工作空间。其中关键参数配置如下,更多详细内容,请参见开通并创建默认工作空间。如果您后续使用RAM用户来部署模型,您需要将RAM用户添加为默认工作空间的成员,并配置管理员角色,详情请参见管理成员;同时,需要为RAM用户授予PAI-EAS的管理权限,详情请参见云产品依赖与授权:EAS
  • 本教程地域选择:华东2(上海)
  • 组合开通:本教程无需使用其他产品,去除勾选其他产品即可。
  • 服务角色授权:单击去授权,完成服务角色授权。

  1. 登录PAI控制台,进入PAI-EAS控制台。

   a.在左侧导航栏,单击工作空间列表

     

b.在工作空间列表页面,找到默认工作空间,单击默认工作空间名称。

c.在左侧导航栏,选择模型部署>模型在线服务(EAS),进入PAI EAS模型在线服务页面。

说明:如果界面弹出一键授权对话框,单击授权即可。

  1. 登录PAI控制台,进入在PAI EAS模型在线服务页面,单击部署服务

  1. 部署服务页面,单击新建服务,在模型服务信息配置以下关键参数,其他参数保持默认即可。
  • 服务名称:自定义一个服务名称,本教程示例为sdwebui_poc
  • 部署方式:本次选择镜像部署AI-WEB应用
  • 镜像选择:在PAI平台镜像列表中选择stable-diffusion-webui;镜像版本选择4.0-standard说明:由于版本迭代迅速,部署时镜像版本选择最高版本即可。
  • 勾选并同意PAI服务专用协议

image.png

  1. 在模型服务信息区域,配置以下参数。
  1. 单击填写模型配置,进行模型配置
  1. 模型配置选择OSS挂载,将OSS路径配置为步骤1中创建的OSS Bucket路径。例如:oss://osstestforsd/data-oss/
  2. 挂载路径:将您配置的OSS文件目录挂载到镜像的/code/stable-diffusion-webui路径下。例如配置为:/code/stable-diffusion-webui/data-oss
  3. 是否只读:开关关闭。

运行命令中增加--data-dir 挂载目录,其中挂载目录需要与模型配置挂载路径的最后一级目录一致。例如:

./webui.sh --listen --port 8000 --skip-version-check --no-hashing --no-download-sd-model --skip-install --api --api-log --time-log --sd-dynamic-cache --data-dir data-oss


image.png


  1. 在资源部署信息区域,配置如下参数
  1. 资源种类:选择公共资源组
  2. 资源配置方法:选择常规资源配置
  3. 资源配置选择:
  1. 如果您使用免费试用资源,本教程实例规格选择试用活动页签的ecs.gn6i-c8g1.2xlarge.limit说明:阿里云免费试用提供的机型包括以下三种机型,仅选择试用活动页签下的这三种机型来部署服务产生的费用,才能使用抵扣包抵扣。 ecs.g6.xlarge.limit ecs.gn6i-c8g1.2xlarge.limit ecs.gn7i-c8g1.2xlarge.limit
  2. 如果您使用个人账户资源,本教程实例规格选择试用活动页签的ecs.gn6i-c8g1.2xlarge.limit。
  1. 额外系统盘:本教程不需要额外系统盘。


  1. 部署服务页面下方,单击部署。

  1. 部署服务对话框中,单击确定

  1. PAI EAS模型在线服务页面,等待1~3分钟,当模型状态创建中变为运行中,表明服务已成功部署,您可继续后续的模型推理操作。

image.png

步骤三:启动WebUI进行模型切换与推理

  1. PAI EAS模型在线服务页面,找到您创建的服务,单击其服务方式列下的查看Web应用

image.png

  1. 启动WebUI。在WebUI页面Stable Diffusion模型(ckpt)下拉列表中切换指定模型,进行模型推理验证。此处选择名称为dreamshaper_7的模型,选择完成后,切换模型时间预计需要几十秒,请耐心等待。

image.png

切换完成后,在文生图页面输入如下信息:

  • 提示词:photo of the warrior Aragorn from Lord of the Rings, film grain
  • 反向提示词:BadDream, (UnrealisticDream:1.2)
  • 采样方法(Sampler):DPM++ SDE Karras
  • 迭代步数(steps):30
  • 相关性(CFG scale):4
  • 随机种(seed):82742

image.png

相关文章
|
25天前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
9天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
29天前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
56 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
18天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
36 12
|
25天前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
46 8
|
25天前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
46 6
|
28天前
|
机器学习/深度学习 数据采集 算法
从零到一:构建高效机器学习模型的旅程####
在探索技术深度与广度的征途中,我深刻体会到技术创新既在于理论的飞跃,更在于实践的积累。本文将通过一个具体案例,分享我在构建高效机器学习模型过程中的实战经验,包括数据预处理、特征工程、模型选择与优化等关键环节,旨在为读者提供一个从零开始构建并优化机器学习模型的实用指南。 ####
|
1月前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
29天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
5月前
|
机器学习/深度学习 人工智能 专有云
人工智能平台PAI使用问题之怎么将DLC的数据写入到另一个阿里云主账号的OSS中
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
下一篇
DataWorks