Python Yolov5火焰烟雾识别源码分享

简介: Yolov5比较Yolov4,Yolov3等其他识别框架,速度快,代码结构简单,识别效率高,对硬件要求比较低。这篇博客针对<<Python Yolov5火焰烟雾识别>>编写代码,代码整洁,规则,易读。 学习与应用推荐首选。

程序示例精选

Python+Yolov8入口人流量统计

如需安装运行环境或远程调试,可点击右边主头像昵称进入个人主页查看博主联系方式,由专业技术人员远程协助!


 前言

Yolov5比较Yolov4,Yolov3等其他识别框架,速度快,代码结构简单,识别效率高,对硬件要求比较低。这篇博客针对<<Python Yolov5火焰烟雾识别>>编写代码,代码整洁,规则,易读。 学习与应用推荐首选。


文章目录

       一、所需工具软件

       二、使用步骤

               1. 引入库

               2. 识别图像特征

               3. 识别参数定义

               4. 运行结果

        三在线协助


一、所需工具软件

         1. Python3.6以上

         2. Pycharm代码编辑器

         3. Torch, OpenCV库

二、使用步骤

1.引入库

代码如下(示例):

importcv2importtorchfromnumpyimportrandomfrommodels.experimentalimportattempt_loadfromutils.datasetsimportLoadStreams, LoadImagesfromutils.generalimportcheck_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_pathfromutils.plotsimportplot_one_boxfromutils.torch_utilsimportselect_device, load_classifier, time_synchronized


2.识别图像特征

代码如下(示例):

defdetect(save_img=False):
source, weights, view_img, save_txt, imgsz=opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_sizewebcam=source.isnumeric() orsource.endswith('.txt') orsource.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://'))
# Directoriessave_dir=Path(increment_path(Path(opt.project) /opt.name, exist_ok=opt.exist_ok))  # increment run    (save_dir/'labels'ifsave_txtelsesave_dir).mkdir(parents=True, exist_ok=True)  # make dir# Initializeset_logging()
device=select_device(opt.device)
half=device.type!='cpu'# half precision only supported on CUDA# Load modelmodel=attempt_load(weights, map_location=device)  # load FP32 modelstride=int(model.stride.max())  # model strideimgsz=check_img_size(imgsz, s=stride)  # check img_sizeifhalf:
model.half()  # to FP16# Second-stage classifierclassify=Falseifclassify:
modelc=load_classifier(name='resnet101', n=2)  # initializemodelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
# Set Dataloadervid_path, vid_writer=None, Noneifwebcam:
view_img=check_imshow()
cudnn.benchmark=True# set True to speed up constant image size inferencedataset=LoadStreams(source, img_size=imgsz, stride=stride)
else:
save_img=Truedataset=LoadImages(source, img_size=imgsz, stride=stride)
# Get names and colorsnames=model.module.namesifhasattr(model, 'module') elsemodel.namescolors= [[random.randint(0, 255) for_inrange(3)] for_innames]
# Run inferenceifdevice.type!='cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run oncet0=time.time()
forpath, img, im0s, vid_capindataset:
img=torch.from_numpy(img).to(device)
img=img.half() ifhalfelseimg.float()  # uint8 to fp16/32img/=255.0# 0 - 255 to 0.0 - 1.0ifimg.ndimension() ==3:
img=img.unsqueeze(0)
# Inferencet1=time_synchronized()
pred=model(img, augment=opt.augment)[0]
# Apply NMSpred=non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t2=time_synchronized()
# Apply Classifierifclassify:
pred=apply_classifier(pred, modelc, img, im0s)
# Process detectionsfori, detinenumerate(pred):  # detections per imageifwebcam:  # batch_size >= 1p, s, im0, frame=path[i], '%g: '%i, im0s[i].copy(), dataset.countelse:
p, s, im0, frame=path, '', im0s, getattr(dataset, 'frame', 0)
p=Path(p)  # to Pathsave_path=str(save_dir/p.name)  # img.jpgtxt_path=str(save_dir/'labels'/p.stem) + (''ifdataset.mode=='image'elsef'_{frame}')  # img.txts+='%gx%g '%img.shape[2:]  # print stringgn=torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwhiflen(det):
# Rescale boxes from img_size to im0 sizedet[:, :4] =scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Write resultsfor*xyxy, conf, clsinreversed(det):
ifsave_txt:  # Write to filexywh= (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /gn).view(-1).tolist()  # normalized xywhline= (cls, *xywh, conf) ifopt.save_confelse (cls, *xywh)  # label formatwithopen(txt_path+'.txt', 'a') asf:
f.write(('%g '*len(line)).rstrip() %line+'\n')
ifsave_imgorview_img:  # Add bbox to imagelabel=f'{names[int(cls)]}{conf:.2f}'plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
# Print time (inference + NMS)print(f'{s}Done. ({t2-t1:.3f}s)')
# Save results (image with detections)ifsave_img:
ifdataset.mode=='image':
cv2.imwrite(save_path, im0)
else:  # 'video'ifvid_path!=save_path:  # new videovid_path=save_pathifisinstance(vid_writer, cv2.VideoWriter):
vid_writer.release()  # release previous video writerfourcc='mp4v'# output video codecfps=vid_cap.get(cv2.CAP_PROP_FPS)
w=int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h=int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer=cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
vid_writer.write(im0)
ifsave_txtorsave_img:
s=f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir/'labels'}"ifsave_txtelse''print(f"Results saved to {save_dir}{s}")
print(f'Done. ({time.time() -t0:.3f}s)')
print(opt)
check_requirements()
withtorch.no_grad():
ifopt.update:  # update all models (to fix SourceChangeWarning)foropt.weightsin ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
detect()
strip_optimizer(opt.weights)
else:
detect()

image.gif

该处使用的url网络请求的数据。

3.识别参数定义:

代码如下(示例):

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default='yolov5_best_road_crack_recog.pt', help='model.pt path(s)')
    parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
    parser.add_argument('--view-img', action='store_true', help='display results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--classes', nargs='+', type=int, default='0', help='filter by class: --class 0, or --class 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default='runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    opt = parser.parse_args()
    print(opt)
    check_requirements()
    with torch.no_grad():
        if opt.update:  # update all models (to fix SourceChangeWarning)
            for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
                detect()
                strip_optimizer(opt.weights)
        else:
            detect()

image.gif

4.运行结果如下:

image.gif

image.gif编辑

image.gif编辑


三、在线协助:

如需安装运行环境或远程调试, 可点击右边 主头像 昵称 进入个人主页查看博主联系方式 ,由专业技术人员远程协助! 1)远程安装运行环境,代码调试 2)Qt, C++, Python入门指导 3)界面美化 4)软件制作


博主推荐文章:python人脸识别统计人数qt窗体-CSDN博客

博主推荐文章:Python Yolov5火焰烟雾识别源码分享-CSDN博客

                        Python OpenCV识别行人入口进出人数统计_python识别人数-CSDN博客

个人博客主页:alicema1111的博客_CSDN博客-Python,C++,网页领域博主

博主所有文章点这里:alicema1111的博客_CSDN博客-Python,C++,网页领域博主



相关文章
|
2月前
|
Python
用python进行视频剪辑源码
这篇文章提供了一个使用Python进行视频剪辑的源码示例,通过结合moviepy和pydub库来实现视频的区间切割和音频合并。
63 2
|
1月前
|
自然语言处理 Java 编译器
为什么要看 Python 源码?它的结构长什么样子?
为什么要看 Python 源码?它的结构长什么样子?
26 2
|
1月前
|
Python
源码解密 Python 的 Event
源码解密 Python 的 Event
40 1
|
1月前
|
数据采集 前端开发 Python
Python pygame 实现游戏 彩色 五子棋 详细注释 附源码 单机版
Python pygame 实现游戏 彩色 五子棋 详细注释 附源码 单机版
71 0
|
3月前
|
Ubuntu Linux 数据安全/隐私保护
使用Cython库包对python的py文件(源码)进行加密,把python的.py文件生成.so文件并调用
本文介绍了在Linux系统(Ubuntu 18.04)下将Python源代码(`.py文件`)加密为`.so文件`的方法。首先安装必要的工具如`python3-dev`、`gcc`和`Cython`。然后通过`setup.py`脚本使用Cython将`.py文件`转化为`.so文件`,从而实现源代码的加密保护。文中详细描述了从编写源代码到生成及调用`.so文件`的具体步骤。此方法相较于转化为`.pyc文件`提供了更高的安全性。
151 2
yolov5项目如何安装pycocotools和opencv-python?
本文提供了解决yolov5项目中安装pycocotools和opencv-python包失败的两种方法:手动安装或使用国内镜像源进行安装。
yolov5项目如何安装pycocotools和opencv-python?
|
3月前
|
测试技术 Python
python自动化测试中装饰器@ddt与@data源码深入解析
综上所述,使用 `@ddt`和 `@data`可以大大简化写作测试用例的过程,让我们能专注于测试逻辑的本身,而无需编写重复的测试方法。通过讲解了 `@ddt`和 `@data`源码的关键部分,我们可以更深入地理解其背后的工作原理。
58 1
|
3月前
|
JSON 算法 API
京东以图搜图功能API接口调用算法源码python
京东图搜接口是一款强大工具,通过上传图片即可搜索京东平台上的商品。适合电商平台、比价应用及需商品识别服务的场景。使用前需了解接口功能并注册开发者账号获取Key和Secret;准备好图片的Base64编码和AppKey;生成安全签名后,利用HTTP客户端发送POST请求至接口URL;最后解析JSON响应数据以获取商品信息。
|
3月前
|
开发者 Python
深入解析Python `httpx`源码,探索现代HTTP客户端的秘密!
深入解析Python `httpx`源码,探索现代HTTP客户端的秘密!
89 1
|
3月前
|
开发者 Python
深入解析Python `requests`库源码,揭开HTTP请求的神秘面纱!
深入解析Python `requests`库源码,揭开HTTP请求的神秘面纱!
180 1
下一篇
无影云桌面