python自动化测试中装饰器@ddt与@data源码深入解析

简介: 综上所述,使用 `@ddt`和 `@data`可以大大简化写作测试用例的过程,让我们能专注于测试逻辑的本身,而无需编写重复的测试方法。通过讲解了 `@ddt`和 `@data`源码的关键部分,我们可以更深入地理解其背后的工作原理。

在Python自动化测试中,ddt(Data-Driven Tests)是一个流行的库,允许开发人员通过装饰器轻松创建数据驱动的测试用例。@ddt@data装饰器是这个库中常用的工具。

ddt库的概念

ddt库利用装饰器扩展了Python的unittest测试框架,使得可以在单个测试方法上应用多组参数进行测试。它避免了编写重复的测试代码,并增强了测试用例的可读性和维护性。

@ddt装饰器

@ddt装饰器应用于测试类。它是类装饰器,负责动态地向测试类添加测试方法。当你在测试类上应用 @ddt装饰器时,它会寻找类中用 @data或其他ddt提供的装饰器标记的测试方法,并为每一组数据生成一个独立的测试方法实例。

@data装饰器

@data装饰器用于测试方法。它允许你为一个测试方法提供多组测试数据。这些数据被用来生成随着数据变化而重复执行的测试方法。这意味着你可以仅编写一个测试方法,并通过不同的数据集多次运行这个方法。

源码解析

@ddt@data实际上是函数装饰器。在Python中,装饰器主要是依靠闭包来实现对函数或类的包装。

以下是一个简化的 @data装饰器源码的逻辑示例:

def data(*values):
    def test_decorator(func):
        if not hasattr(func, "__test_params__"):
            func.__test_params__ = []
        func.__test_params__.extend(values)
        return func
    return test_decorator

@data(1, 2, 3)
def test_method(self, value):
    # ...测试逻辑

在这个简化版本中,你可以看到 @data实际上是一个包装函数的包装器。它添加一个特殊的属性 __test_params__到被装饰的函数上,其中包含了所有的测试参数。

接着,@ddt装饰器的源码逻辑大概如下:

def ddt(cls):
    for name, func in list(cls.__dict__.items()):
        if hasattr(func, "__test_params__"):
            for idx, params in enumerate(func.__test_params__):
                test_name = f"{name}_{idx}"
                test_func = ddt_helper(func, **params)
                setattr(cls, test_name, test_func)
    return cls

def ddt_helper(func, **params):
    def test(self):
        return func(self, **params)
    test.__name__ = func.__name__
    return test

这里的 ddt装饰器查找所有带有 __test_params__属性的测试方法,并且对每一组参数创建一个新的测试方法。

综上所述,使用 @ddt@data可以大大简化写作测试用例的过程,让我们能专注于测试逻辑的本身,而无需编写重复的测试方法。通过讲解了 @ddt@data源码的关键部分,我们可以更深入地理解其背后的工作原理。

目录
相关文章
|
7天前
|
缓存 测试技术 Python
Python装饰器:优雅地增强函数功能
Python装饰器:优雅地增强函数功能
158 99
|
7天前
|
存储 缓存 测试技术
Python装饰器:优雅地增强函数功能
Python装饰器:优雅地增强函数功能
141 98
|
12天前
|
缓存 Python
Python中的装饰器:优雅地增强函数功能
Python中的装饰器:优雅地增强函数功能
|
22天前
|
存储 缓存 测试技术
理解Python装饰器:简化代码的强大工具
理解Python装饰器:简化代码的强大工具
|
1月前
|
Web App开发 人工智能 JavaScript
主流自动化测试框架的技术解析与实战指南
本内容深入解析主流测试框架Playwright、Selenium与Cypress的核心架构与适用场景,对比其在SPA测试、CI/CD、跨浏览器兼容性等方面的表现。同时探讨Playwright在AI增强测试、录制回放、企业部署等领域的实战优势,以及Selenium在老旧系统和IE兼容性中的坚守场景。结合六大典型场景,提供技术选型决策指南,并展望AI赋能下的未来测试体系。
|
1月前
|
存储 人工智能 算法
AI测试平台实战:深入解析自动化评分和多模型对比评测
在AI技术迅猛发展的今天,测试工程师面临着如何高效评估大模型性能的全新挑战。本文将深入探讨AI测试平台中自动化评分与多模型对比评测的关键技术与实践方法,为测试工程师提供可落地的解决方案。
|
1月前
|
程序员 测试技术 开发者
Python装饰器:简化代码的强大工具
Python装饰器:简化代码的强大工具
156 92
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
149 8
|
6天前
|
人工智能 自然语言处理 前端开发
深度解析Playwright MCP:功能、优势与挑战,AI如何提升测试效率与覆盖率
Playwright MCP通过AI与浏览器交互,实现自然语言驱动的自动化测试。它降低门槛、提升效率,助力测试工程师聚焦高价值工作,是探索性测试与快速验证的新利器。

推荐镜像

更多