m基于DVB-T的COFDM+16QAM+Viterbi码通信链路matlab性能仿真,包括载波和定时同步,信道估计

简介: m基于DVB-T的COFDM+16QAM+Viterbi码通信链路matlab性能仿真,包括载波和定时同步,信道估计

1.算法仿真效果
matlab2022a仿真结果如下:

包括小数倍及整数倍载波同步,粗及细定时同步

c4b22353128eb20cb6d457701fd06694_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
714c15db448da0b7985b11430349eba2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
ce20cde6c895615023544e4fc6f9b20f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
基于DVB-T的COFDM+16QAM+Viterbi码通信链路是一种常用的数字视频广播系统,用于实现高效的传输和接收。该系统结合了正交频分复用(COFDM)、16QAM调制和Viterbi编码与解码技术。此外,系统中还包括载波同步、定时同步和信道估计模块,用于实现信号的载波频率和定时偏移的同步,以及信道状态的估计。本文将详细介绍基于DVB-T的COFDM+16QAM+Viterbi码通信链路的系统原理、数学公式和各个环节的功能。基于DVB-T的COFDM+16QAM+Viterbi码通信链路通过COFDM技术将数据分成多个子载波,在频域上并行传输,提高了系统的抗多径衰落和频偏的能力。16QAM调制将每四个比特映射到一个复数点上,实现了16种相位和振幅的调制。Viterbi编码是一种误码控制编码技术,通过状态转移图构建编码器和解码器。载波同步、定时同步和信道估计模块用于实现信号的载波频率和定时偏移的同步,以及信道状态的估计。

COFDM调制
COFDM技术将整个频谱分成多个子载波,每个子载波之间正交传输。在每个OFDM符号中,数据被并行分配到不同的子载波上,并在频域上进行调制。COFDM调制可以通过快速傅里叶变换(FFT)将时域信号转换为频域信号。

16QAM调制
16QAM调制将每四个比特映射到一个复数点上,共有16种相位和振幅的调制方式。16QAM调制可以在一个符号周期内传输4个比特,实现高效的频谱利用。

Viterbi编码是和解码

   Viterbi编码是一种误码控制编码技术,通过状态转移图构建编码器和解码器。编码器将输入数据和状态转移图进行运算,生成编码后的数据。解码器使用Viterbi算法,根据接收到的数据和状态转移图进行迭代解码。Viterbi编码可以提供较高的纠错能力和编码效率。

3e868125b34f85ed344e6bf1998b6757_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

载波同步
载波同步模块用于估计接收信号的载波频率偏移,并进行补偿。载波频率偏移会导致接收信号的相位发生变化,因此需要通过同步来保证正确的信号接收和解调。载波同步通过估计接收信号的相位差来计算载波频率偏移,然后通过反馈控制来调整本地振荡器的频率,使其与接收信号的载波频率保持同步。

定时同步
定时同步模块用于估计接收信号的定时偏移,并进行补偿。定时偏移会导致接收信号的采样时刻不准确,因此需要通过同步来恢复正确的采样时刻。定时同步通过计算接收信号的时钟边沿间隔的平方误差来估计定时偏移,然后通过反馈控制来调整采样时钟的相位,实现接收信号的定时同步。

信道估计
信道估计模块用于估计信道状态,以便在接收端进行合适的解调和解码。信道状态的估计可以通过接收信号的预处理和训练序列的发送来实现。根据接收信号和已知的训练序列,可以估计信道的衰落、噪声和多径效应等参数。

3.MATLAB核心程序
```for i=1:length(TPS)
train_sym(:,TPS(i))=randint;
train_sym(:,TPS(i))=A_avg2(1/2-train_sym(:,TPS(i))); %传数参数信令值
end
for i=1:length(TPS)
X3(:,TPS(i))=train_sym(:,TPS(i)); %插入传数参数信令
end
%--------------------------------------------------------------------------
%% 插入数据
Data_index=zeros(4,1705);
X_data=X2;
X_out=X3(1:4,:);
for i=1:4
m=1;
for j1=1:1705
if abs(X_out(i,j1))<0.1
X_out(i,j1)=X_data(i,m);
Data_index(i,j1)=3; % 记忆有效数据点处为3,导频和TPS为0,为接收端提取数据用。
m=m+1; %只有1512个数据,最后一个m多加了1.
end
end
M(i)=m;
end
Data_index=[Data_index;Data_index;Data_index;Data_index];
%组成68个OFDM符号,4个FODM符号为一循环
X41=[X_out;X_out;X_out;X_out;X_out;X_out;X_out;X_out];
X42=[X41;X41;X_out];
CP_pilot=X42(1:6,:);
% ------------------------------------------------------------------------
%% IFFT变换 %%
IFFT_modulation=zeros(symbols_per_carrier,IFFT_bin_length);
IFFT_modulation(:,signal)=X42;
X4=ifft(IFFT_modulation,IFFT_bin_length,2); %2为行运算,1为列运算。
% 下面的方法与前一行运算等同。复数矩阵行列调换按如下方式进行,不能用reshape
%ifft_x=(IFFT_modulation).';
%X41=ifft(ifft_x,2048);
%X4=(X41).';

%--------------------------------------------------------------------------
%% 加循环前缀保护间隔 %%
X10=zeros(68,2560);
for j1=1:68
X10(j1,1:GI)=X4(j1,2048-512+1:end);
X10(j1,GI+1:end)=X4(j1,1:end);
end
..................................................................
% ---------------极大似然作图----------------------------------------------
figure(1)
subplot(211);
plot(T,cor);
xlabel('载波数');
ylabel('相关值');
grid on;
%% -------------------------- FFT变换 ---------------------------
N=IFFT_bin_length;
Ng=GI;
Y8=r; % 加延时,使截取点落入循环前缀之内。
r=Y8;
r_ofdmin=reshape(r(1:122560),2560,12).';
r_nocp=r_ofdmin(:,GI+1:end);
r_Sym=fft(r_nocp,2048,2);
%figure(2)
scatterplot(r_Sym(1:1705));
title('存在定时误差的FFT窗口取样符号');
%% ------------------细定时估计------------------------------------
........................................................................
%% -------------------- 信道估计 --------------------------
% 简化方式,只能对第一个OFDM符号做估计,且认为是分散导频模式0.
% 只保留分散导频和连续导频
r_chestimation=X_modify1(:,1:1705);
r_chestimation=X_modify1(First_ip:First_ip+8-1,:);
X_modify2=r_chestimation;
r_chestimation(:,TPS)=0;
for m=1:8
for k=1:1705
if (abs(Data_index(m,k))>0.5)
r_chestimation(m,k)=0;
end
end
end
r_chestimation_sum=zeros(1,1705); % **

% 连续导频用第一个符号的连续导频置换。修改为Max_ip置换。
%CP_pilot
for i=1:8
for k=1:1705;
if(abs(X3_SPCP12(i,k))>0.001)
Hp(i,k)=r_chestimation(i,k)./X3_SPCP12(i,k);
end
end
end
Hp_CP(:,CP)=Hp(:,CP); %保留连续导频的信道估计待用
% 第一列连续导频再替换回去。
Hp1=Hp;
Hp1(:,CP)=Hp_CP(:,CP);
% 行方向(频率)插值,对第5个OFDM符号的信道估计
for n=0:568-1
Hp1(5,3n+2)=2Hp1(5,3n+1)/3+Hp1(5,3n+4)/3;
Hp1(5,3n+3)=Hp1(5,3n+1)/3+2Hp1(5,3n+4)/3;
end
% Hp1=Hp;
................................................................................
%% -------------解调和viterbi解码 --------------------------------
hDemod = modem.qamdemod('M', ModulateIndex, 'PhaseOffset', 0, ...
'SymbolOrder', 'Gray', 'OutputType', 'Bit');
% scatterplot(msg_rx_int);
msg_demod = demodulate(hDemod, S_data.');
msg_dec = vitdec(msg_demod, trellis, tblen, 'cont', 'hard');
[nChnlErrs BERChnl] = biterr(msg_enc(1:end/4), msg_demod);
[nCodErrs BERCoded] = biterr(msg_orig(1:end/4-tblen), msg_dec(1+tblen:end));
Time_err
Max_ip
Max_i
nChnlErrs
nCodErrs
```

相关文章
|
1月前
|
算法 数据安全/隐私保护
基于DVB-T的COFDM+16QAM+LDPC图传通信系统matlab仿真,包括载波同步,定时同步,信道估计
### 简介 本项目基于DVB-T标准,实现COFDM+16QAM+LDPC码通信链路的MATLAB仿真。通过COFDM技术将数据分成多个子载波并行传输,结合16QAM调制和LDPC编码提高传输效率和可靠性。系统包括载波同步、定时同步和信道估计模块,确保信号的准确接收与解调。MATLAB 2022a仿真结果显示了良好的性能,完整代码无水印。仿真操作步骤配有视频教程,便于用户理解和使用。 核心程序涵盖导频插入、载波频率同步、信道估计及LDPC解码等关键环节。仿真结果展示了系统的误码率性能,并保存为R1.mat文件。
127 76
|
1天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
本项目基于MATLAB 2022a实现图像传输通信系统的仿真,涵盖QPSK调制解调、扩频技术和Turbo译码。系统适用于无人机图像传输等高要求场景,确保图像质量和传输稳定性。通过仿真,验证了系统在不同信噪比下的性能,展示了图像的接收与恢复效果。核心代码实现了二进制数据到RGB图像的转换与显示,并保存不同条件下的结果。
16 6
|
1月前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+LDPC编译码的16QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,适用于无人机、视频监控等场景。系统采用16QAM调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB 2022a仿真结果显示图像传输效果良好,附带的操作视频详细介绍了仿真步骤。核心代码实现了图像的二进制转换、矩阵重组及RGB合并,确保图像正确显示并保存为.mat文件。
53 20
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
9月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
9月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)

热门文章

最新文章