m基于DVB-T的COFDM+16QAM+Viterbi码通信链路matlab性能仿真,包括载波和定时同步,信道估计

简介: m基于DVB-T的COFDM+16QAM+Viterbi码通信链路matlab性能仿真,包括载波和定时同步,信道估计

1.算法仿真效果
matlab2022a仿真结果如下:

包括小数倍及整数倍载波同步,粗及细定时同步

c4b22353128eb20cb6d457701fd06694_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
714c15db448da0b7985b11430349eba2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
ce20cde6c895615023544e4fc6f9b20f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
基于DVB-T的COFDM+16QAM+Viterbi码通信链路是一种常用的数字视频广播系统,用于实现高效的传输和接收。该系统结合了正交频分复用(COFDM)、16QAM调制和Viterbi编码与解码技术。此外,系统中还包括载波同步、定时同步和信道估计模块,用于实现信号的载波频率和定时偏移的同步,以及信道状态的估计。本文将详细介绍基于DVB-T的COFDM+16QAM+Viterbi码通信链路的系统原理、数学公式和各个环节的功能。基于DVB-T的COFDM+16QAM+Viterbi码通信链路通过COFDM技术将数据分成多个子载波,在频域上并行传输,提高了系统的抗多径衰落和频偏的能力。16QAM调制将每四个比特映射到一个复数点上,实现了16种相位和振幅的调制。Viterbi编码是一种误码控制编码技术,通过状态转移图构建编码器和解码器。载波同步、定时同步和信道估计模块用于实现信号的载波频率和定时偏移的同步,以及信道状态的估计。

COFDM调制
COFDM技术将整个频谱分成多个子载波,每个子载波之间正交传输。在每个OFDM符号中,数据被并行分配到不同的子载波上,并在频域上进行调制。COFDM调制可以通过快速傅里叶变换(FFT)将时域信号转换为频域信号。

16QAM调制
16QAM调制将每四个比特映射到一个复数点上,共有16种相位和振幅的调制方式。16QAM调制可以在一个符号周期内传输4个比特,实现高效的频谱利用。

Viterbi编码是和解码

   Viterbi编码是一种误码控制编码技术,通过状态转移图构建编码器和解码器。编码器将输入数据和状态转移图进行运算,生成编码后的数据。解码器使用Viterbi算法,根据接收到的数据和状态转移图进行迭代解码。Viterbi编码可以提供较高的纠错能力和编码效率。

3e868125b34f85ed344e6bf1998b6757_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

载波同步
载波同步模块用于估计接收信号的载波频率偏移,并进行补偿。载波频率偏移会导致接收信号的相位发生变化,因此需要通过同步来保证正确的信号接收和解调。载波同步通过估计接收信号的相位差来计算载波频率偏移,然后通过反馈控制来调整本地振荡器的频率,使其与接收信号的载波频率保持同步。

定时同步
定时同步模块用于估计接收信号的定时偏移,并进行补偿。定时偏移会导致接收信号的采样时刻不准确,因此需要通过同步来恢复正确的采样时刻。定时同步通过计算接收信号的时钟边沿间隔的平方误差来估计定时偏移,然后通过反馈控制来调整采样时钟的相位,实现接收信号的定时同步。

信道估计
信道估计模块用于估计信道状态,以便在接收端进行合适的解调和解码。信道状态的估计可以通过接收信号的预处理和训练序列的发送来实现。根据接收信号和已知的训练序列,可以估计信道的衰落、噪声和多径效应等参数。

3.MATLAB核心程序
```for i=1:length(TPS)
train_sym(:,TPS(i))=randint;
train_sym(:,TPS(i))=A_avg2(1/2-train_sym(:,TPS(i))); %传数参数信令值
end
for i=1:length(TPS)
X3(:,TPS(i))=train_sym(:,TPS(i)); %插入传数参数信令
end
%--------------------------------------------------------------------------
%% 插入数据
Data_index=zeros(4,1705);
X_data=X2;
X_out=X3(1:4,:);
for i=1:4
m=1;
for j1=1:1705
if abs(X_out(i,j1))<0.1
X_out(i,j1)=X_data(i,m);
Data_index(i,j1)=3; % 记忆有效数据点处为3,导频和TPS为0,为接收端提取数据用。
m=m+1; %只有1512个数据,最后一个m多加了1.
end
end
M(i)=m;
end
Data_index=[Data_index;Data_index;Data_index;Data_index];
%组成68个OFDM符号,4个FODM符号为一循环
X41=[X_out;X_out;X_out;X_out;X_out;X_out;X_out;X_out];
X42=[X41;X41;X_out];
CP_pilot=X42(1:6,:);
% ------------------------------------------------------------------------
%% IFFT变换 %%
IFFT_modulation=zeros(symbols_per_carrier,IFFT_bin_length);
IFFT_modulation(:,signal)=X42;
X4=ifft(IFFT_modulation,IFFT_bin_length,2); %2为行运算,1为列运算。
% 下面的方法与前一行运算等同。复数矩阵行列调换按如下方式进行,不能用reshape
%ifft_x=(IFFT_modulation).';
%X41=ifft(ifft_x,2048);
%X4=(X41).';

%--------------------------------------------------------------------------
%% 加循环前缀保护间隔 %%
X10=zeros(68,2560);
for j1=1:68
X10(j1,1:GI)=X4(j1,2048-512+1:end);
X10(j1,GI+1:end)=X4(j1,1:end);
end
..................................................................
% ---------------极大似然作图----------------------------------------------
figure(1)
subplot(211);
plot(T,cor);
xlabel('载波数');
ylabel('相关值');
grid on;
%% -------------------------- FFT变换 ---------------------------
N=IFFT_bin_length;
Ng=GI;
Y8=r; % 加延时,使截取点落入循环前缀之内。
r=Y8;
r_ofdmin=reshape(r(1:122560),2560,12).';
r_nocp=r_ofdmin(:,GI+1:end);
r_Sym=fft(r_nocp,2048,2);
%figure(2)
scatterplot(r_Sym(1:1705));
title('存在定时误差的FFT窗口取样符号');
%% ------------------细定时估计------------------------------------
........................................................................
%% -------------------- 信道估计 --------------------------
% 简化方式,只能对第一个OFDM符号做估计,且认为是分散导频模式0.
% 只保留分散导频和连续导频
r_chestimation=X_modify1(:,1:1705);
r_chestimation=X_modify1(First_ip:First_ip+8-1,:);
X_modify2=r_chestimation;
r_chestimation(:,TPS)=0;
for m=1:8
for k=1:1705
if (abs(Data_index(m,k))>0.5)
r_chestimation(m,k)=0;
end
end
end
r_chestimation_sum=zeros(1,1705); % **

% 连续导频用第一个符号的连续导频置换。修改为Max_ip置换。
%CP_pilot
for i=1:8
for k=1:1705;
if(abs(X3_SPCP12(i,k))>0.001)
Hp(i,k)=r_chestimation(i,k)./X3_SPCP12(i,k);
end
end
end
Hp_CP(:,CP)=Hp(:,CP); %保留连续导频的信道估计待用
% 第一列连续导频再替换回去。
Hp1=Hp;
Hp1(:,CP)=Hp_CP(:,CP);
% 行方向(频率)插值,对第5个OFDM符号的信道估计
for n=0:568-1
Hp1(5,3n+2)=2Hp1(5,3n+1)/3+Hp1(5,3n+4)/3;
Hp1(5,3n+3)=Hp1(5,3n+1)/3+2Hp1(5,3n+4)/3;
end
% Hp1=Hp;
................................................................................
%% -------------解调和viterbi解码 --------------------------------
hDemod = modem.qamdemod('M', ModulateIndex, 'PhaseOffset', 0, ...
'SymbolOrder', 'Gray', 'OutputType', 'Bit');
% scatterplot(msg_rx_int);
msg_demod = demodulate(hDemod, S_data.');
msg_dec = vitdec(msg_demod, trellis, tblen, 'cont', 'hard');
[nChnlErrs BERChnl] = biterr(msg_enc(1:end/4), msg_demod);
[nCodErrs BERCoded] = biterr(msg_orig(1:end/4-tblen), msg_dec(1+tblen:end));
Time_err
Max_ip
Max_i
nChnlErrs
nCodErrs
```

相关文章
|
2月前
|
算法 数据安全/隐私保护
基于PSO粒子群优化算法的256QAM星座图的最优概率整形matlab仿真,对比PSO优化前后整形星座图和误码率
本项目基于MATLAB 2022a仿真256QAM系统,采用概率星座整形(PCS)技术优化星座点分布,结合粒子群优化(PSO)算法搜索最优整形因子v,降低误码率,提升传输性能。核心程序包含完整优化流程。
97 0
|
7天前
|
数据可视化
16QAM、32QAM和64QAM星座图的MATLAB实现
16QAM、32QAM和64QAM星座图的MATLAB实现
83 4
|
1月前
|
机器学习/深度学习 算法 5G
【信道估计】毫米波大规模MIMO系统的透镜天线阵列可靠波束空间信道估计研究(Matlab实现)
【信道估计】毫米波大规模MIMO系统的透镜天线阵列可靠波束空间信道估计研究(Matlab实现)
|
1月前
|
机器学习/深度学习 数据采集 编解码
基于深度学习分类的时相关MIMO信道的递归CSI量化(Matlab代码实现)
基于深度学习分类的时相关MIMO信道的递归CSI量化(Matlab代码实现)
|
2月前
|
5G Python
选择合并应用于差分放大转发中继在瑞利衰落信道上的通信系统研究(Matlab代码实现)
选择合并应用于差分放大转发中继在瑞利衰落信道上的通信系统研究(Matlab代码实现)
|
1月前
|
5G Python
【零强化均衡器的MIMO】【BPSK】在瑞利衰落信道中使用零强化均衡器的2x2 MIMO系统(Matlab代码实现)
【零强化均衡器的MIMO】【BPSK】在瑞利衰落信道中使用零强化均衡器的2x2 MIMO系统(Matlab代码实现)
|
2月前
|
网络协议 Python
水声网络(UAN)仿真的信道建模(Matlab代码实现)
水声网络(UAN)仿真的信道建模(Matlab代码实现)
|
2月前
|
机器学习/深度学习 算法
【RIS 辅助的 THz 混合场波束斜视下的信道估计与定位】在混合场波束斜视效应下,利用太赫兹超大可重构智能表面感知用户信道与位置(Matlab代码实现)
【RIS 辅助的 THz 混合场波束斜视下的信道估计与定位】在混合场波束斜视效应下,利用太赫兹超大可重构智能表面感知用户信道与位置(Matlab代码实现)
|
22天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
22天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
139 14

热门文章

最新文章

下一篇
oss教程