m基于DVB-T的COFDM+16QAM+Viterbi码通信链路matlab性能仿真,包括载波和定时同步,信道估计

简介: m基于DVB-T的COFDM+16QAM+Viterbi码通信链路matlab性能仿真,包括载波和定时同步,信道估计

1.算法仿真效果
matlab2022a仿真结果如下:

包括小数倍及整数倍载波同步,粗及细定时同步

c4b22353128eb20cb6d457701fd06694_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
714c15db448da0b7985b11430349eba2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
ce20cde6c895615023544e4fc6f9b20f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
基于DVB-T的COFDM+16QAM+Viterbi码通信链路是一种常用的数字视频广播系统,用于实现高效的传输和接收。该系统结合了正交频分复用(COFDM)、16QAM调制和Viterbi编码与解码技术。此外,系统中还包括载波同步、定时同步和信道估计模块,用于实现信号的载波频率和定时偏移的同步,以及信道状态的估计。本文将详细介绍基于DVB-T的COFDM+16QAM+Viterbi码通信链路的系统原理、数学公式和各个环节的功能。基于DVB-T的COFDM+16QAM+Viterbi码通信链路通过COFDM技术将数据分成多个子载波,在频域上并行传输,提高了系统的抗多径衰落和频偏的能力。16QAM调制将每四个比特映射到一个复数点上,实现了16种相位和振幅的调制。Viterbi编码是一种误码控制编码技术,通过状态转移图构建编码器和解码器。载波同步、定时同步和信道估计模块用于实现信号的载波频率和定时偏移的同步,以及信道状态的估计。

COFDM调制
COFDM技术将整个频谱分成多个子载波,每个子载波之间正交传输。在每个OFDM符号中,数据被并行分配到不同的子载波上,并在频域上进行调制。COFDM调制可以通过快速傅里叶变换(FFT)将时域信号转换为频域信号。

16QAM调制
16QAM调制将每四个比特映射到一个复数点上,共有16种相位和振幅的调制方式。16QAM调制可以在一个符号周期内传输4个比特,实现高效的频谱利用。

Viterbi编码是和解码

   Viterbi编码是一种误码控制编码技术,通过状态转移图构建编码器和解码器。编码器将输入数据和状态转移图进行运算,生成编码后的数据。解码器使用Viterbi算法,根据接收到的数据和状态转移图进行迭代解码。Viterbi编码可以提供较高的纠错能力和编码效率。

3e868125b34f85ed344e6bf1998b6757_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

载波同步
载波同步模块用于估计接收信号的载波频率偏移,并进行补偿。载波频率偏移会导致接收信号的相位发生变化,因此需要通过同步来保证正确的信号接收和解调。载波同步通过估计接收信号的相位差来计算载波频率偏移,然后通过反馈控制来调整本地振荡器的频率,使其与接收信号的载波频率保持同步。

定时同步
定时同步模块用于估计接收信号的定时偏移,并进行补偿。定时偏移会导致接收信号的采样时刻不准确,因此需要通过同步来恢复正确的采样时刻。定时同步通过计算接收信号的时钟边沿间隔的平方误差来估计定时偏移,然后通过反馈控制来调整采样时钟的相位,实现接收信号的定时同步。

信道估计
信道估计模块用于估计信道状态,以便在接收端进行合适的解调和解码。信道状态的估计可以通过接收信号的预处理和训练序列的发送来实现。根据接收信号和已知的训练序列,可以估计信道的衰落、噪声和多径效应等参数。

3.MATLAB核心程序
```for i=1:length(TPS)
train_sym(:,TPS(i))=randint;
train_sym(:,TPS(i))=A_avg2(1/2-train_sym(:,TPS(i))); %传数参数信令值
end
for i=1:length(TPS)
X3(:,TPS(i))=train_sym(:,TPS(i)); %插入传数参数信令
end
%--------------------------------------------------------------------------
%% 插入数据
Data_index=zeros(4,1705);
X_data=X2;
X_out=X3(1:4,:);
for i=1:4
m=1;
for j1=1:1705
if abs(X_out(i,j1))<0.1
X_out(i,j1)=X_data(i,m);
Data_index(i,j1)=3; % 记忆有效数据点处为3,导频和TPS为0,为接收端提取数据用。
m=m+1; %只有1512个数据,最后一个m多加了1.
end
end
M(i)=m;
end
Data_index=[Data_index;Data_index;Data_index;Data_index];
%组成68个OFDM符号,4个FODM符号为一循环
X41=[X_out;X_out;X_out;X_out;X_out;X_out;X_out;X_out];
X42=[X41;X41;X_out];
CP_pilot=X42(1:6,:);
% ------------------------------------------------------------------------
%% IFFT变换 %%
IFFT_modulation=zeros(symbols_per_carrier,IFFT_bin_length);
IFFT_modulation(:,signal)=X42;
X4=ifft(IFFT_modulation,IFFT_bin_length,2); %2为行运算,1为列运算。
% 下面的方法与前一行运算等同。复数矩阵行列调换按如下方式进行,不能用reshape
%ifft_x=(IFFT_modulation).';
%X41=ifft(ifft_x,2048);
%X4=(X41).';

%--------------------------------------------------------------------------
%% 加循环前缀保护间隔 %%
X10=zeros(68,2560);
for j1=1:68
X10(j1,1:GI)=X4(j1,2048-512+1:end);
X10(j1,GI+1:end)=X4(j1,1:end);
end
..................................................................
% ---------------极大似然作图----------------------------------------------
figure(1)
subplot(211);
plot(T,cor);
xlabel('载波数');
ylabel('相关值');
grid on;
%% -------------------------- FFT变换 ---------------------------
N=IFFT_bin_length;
Ng=GI;
Y8=r; % 加延时,使截取点落入循环前缀之内。
r=Y8;
r_ofdmin=reshape(r(1:122560),2560,12).';
r_nocp=r_ofdmin(:,GI+1:end);
r_Sym=fft(r_nocp,2048,2);
%figure(2)
scatterplot(r_Sym(1:1705));
title('存在定时误差的FFT窗口取样符号');
%% ------------------细定时估计------------------------------------
........................................................................
%% -------------------- 信道估计 --------------------------
% 简化方式,只能对第一个OFDM符号做估计,且认为是分散导频模式0.
% 只保留分散导频和连续导频
r_chestimation=X_modify1(:,1:1705);
r_chestimation=X_modify1(First_ip:First_ip+8-1,:);
X_modify2=r_chestimation;
r_chestimation(:,TPS)=0;
for m=1:8
for k=1:1705
if (abs(Data_index(m,k))>0.5)
r_chestimation(m,k)=0;
end
end
end
r_chestimation_sum=zeros(1,1705); % **

% 连续导频用第一个符号的连续导频置换。修改为Max_ip置换。
%CP_pilot
for i=1:8
for k=1:1705;
if(abs(X3_SPCP12(i,k))>0.001)
Hp(i,k)=r_chestimation(i,k)./X3_SPCP12(i,k);
end
end
end
Hp_CP(:,CP)=Hp(:,CP); %保留连续导频的信道估计待用
% 第一列连续导频再替换回去。
Hp1=Hp;
Hp1(:,CP)=Hp_CP(:,CP);
% 行方向(频率)插值,对第5个OFDM符号的信道估计
for n=0:568-1
Hp1(5,3n+2)=2Hp1(5,3n+1)/3+Hp1(5,3n+4)/3;
Hp1(5,3n+3)=Hp1(5,3n+1)/3+2Hp1(5,3n+4)/3;
end
% Hp1=Hp;
................................................................................
%% -------------解调和viterbi解码 --------------------------------
hDemod = modem.qamdemod('M', ModulateIndex, 'PhaseOffset', 0, ...
'SymbolOrder', 'Gray', 'OutputType', 'Bit');
% scatterplot(msg_rx_int);
msg_demod = demodulate(hDemod, S_data.');
msg_dec = vitdec(msg_demod, trellis, tblen, 'cont', 'hard');
[nChnlErrs BERChnl] = biterr(msg_enc(1:end/4), msg_demod);
[nCodErrs BERCoded] = biterr(msg_orig(1:end/4-tblen), msg_dec(1+tblen:end));
Time_err
Max_ip
Max_i
nChnlErrs
nCodErrs
```

相关文章
|
2月前
|
算法
m基于OFDM系统的PAPR性能matlab仿真,对比LFDMA,IFDMA,DFDMA
在MATLAB 2022a中,进行了OFDM、LFDMA、IFDMA和DFDMA的PAPR仿真,显示了两种图像结果。PAPR是OFDM系统中的关键指标,影响功率放大器效率。LFDMA通过数据分配减少峰值,IFDMA利用交织子载波,DFDMA则通过时域分布降低峰值。MATLAB程序执行包括数据频域映射、子载波分配、时域转换、脉冲整形和PAPR计算,并根据不同模式和子载波策略保存结果。程序还绘制了PAPR的累积分布函数(CCDF)图,用于比较不同方法的效果。
37 5
|
8天前
|
机器学习/深度学习 算法 数据可视化
基于BP神经网络的64QAM解调算法matlab性能仿真
**算法预览图省略** MATLAB 2022A版中,运用BP神经网络进行64QAM解调。64QAM通过6比特映射至64复数符号,提高数据速率。BP网络作为非线性解调器,学习失真信号到比特的映射,对抗信道噪声和多径效应。网络在处理非线性失真和复杂情况时展现高适应性和鲁棒性。核心代码部分未显示。
|
20天前
|
算法
基于ADM自适应增量调制算法的matlab性能仿真
该文主要探讨基于MATLAB的ADM自适应增量调制算法仿真,对比ADM与DM算法。通过图表展示调制与解调效果,核心程序包括输入输出比较及SNR分析。ADM算法根据信号斜率动态调整量化步长,以适应信号变化。在MATLAB中实现ADM涉及定义输入信号、初始化参数、执行算法逻辑及性能评估。
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于BP神经网络的32QAM解调算法matlab性能仿真
```markdown - 32QAM解调算法运用BP神经网络在matlab2022a中实现,适应复杂通信环境。 - 网络结构含输入、隐藏和输出层,利用梯度下降法优化,以交叉熵损失最小化为目标训练。 - 训练后,解调通过前向传播完成,提高在噪声和干扰中的数据恢复能力。 ``` 请注意,由于字符限制,部分详细信息(如具体图示和详细步骤)未能在摘要中包含。
|
13天前
|
传感器 存储 算法
无线传感网路由VBF协议和DBR协议的MATLAB性能仿真
**摘要** 本文档介绍了在MATLAB2022a中对无线传感器网络的VBF和DBR路由协议的性能仿真,关注能量消耗和节点存活。VBF协议依赖于节点的地理位置,采用源路由,通过矢量和管道路由选择转发节点。DBR协议则运用贪婪算法,基于节点深度决定转发,以接近水面为目标。两协议均考虑能量效率,但可能导致不必要的数据传输和重复分组,需优化策略以适应密集网络和避免冲突。
|
2月前
|
机器学习/深度学习 算法
基于BP神经网络的QPSK解调算法matlab性能仿真
该文介绍了使用MATLAB2022a实现的QPSK信号BP神经网络解调算法。QPSK调制信号在复杂信道环境下受到干扰,BP网络能适应性地补偿失真,降低误码率。核心程序涉及数据分割、网络训练及性能评估,最终通过星座图和误码率曲线展示结果。
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于BP神经网络的16QAM解调算法matlab性能仿真
这是一个关于使用MATLAB2022a实现的16QAM解调算法的摘要。该算法基于BP神经网络,利用其非线性映射和学习能力从复数信号中估计16QAM符号,具有良好的抗噪性能。算法包括训练和测试两个阶段,通过反向传播调整网络参数以减小输出误差。核心程序涉及数据加载、可视化以及神经网络训练,评估指标为误码率(BER)和符号错误率(SER)。代码中还包含了星座图的绘制和训练曲线的展示。
|
2月前
|
数据可视化 算法
MATLAB Simulink 交交变流电路性能研究
MATLAB Simulink 交交变流电路性能研究
33 2
|
2月前
|
数据可视化 算法
MATLAB Simulink 单相桥式整流电路性能研究
MATLAB Simulink 单相桥式整流电路性能研究
29 2
|
2月前
|
数据可视化 算法
MATLAB Simulink 单相半波可控整流电路性能研究
MATLAB Simulink 单相半波可控整流电路性能研究
19 2