基于粒子群算法的多目标优化

简介: 在实际工程优化问题中,多数问题是多目标优化问题。相对于单目标优化问题,多目标优化问题的显著特点是优化各个目标使其同时达到综合的最优值。然而,由于多目标优化问题的各个目标之间往往是相互冲突的,在满足其中一个目标最优的同时,其他的目标往往可能会受其影响而变得很差。因此,一般适用于单目标问题的方法难以用于多目标问题的求解。

1 理论基础

       在实际工程优化问题中,多数问题是多目标优化问题。相对于单目标优化问题,多目标优化问题的显著特点是优化各个目标使其同时达到综合的最优值。然而,由于多目标优化问题的各个目标之间往往是相互冲突的,在满足其中一个目标最优的同时,其他的目标往往可能会受其影响而变得很差。因此,一般适用于单目标问题的方法难以用于多目标问题的求解。

       多目标优化问题很早就引起了人们的重视,现已经发展出多种求解多目标优化问题的方法。多目标优化问题求解中最重要的概念是非劣解和非劣解集,两者的定义如下。

       非劣解(noninferior solution):在多目标优化问题的可行域中存在一个问题解,若不存在另一个可行解,使得一个解中的目标全部劣于该解,则该解称为多目标优化问题的非劣解。所有非劣解的集合叫做非劣解集(noninferior set)。在求解实际问题中,过多的非劣解是无法直接应用的,决策者只能选择其中最满意的一个非劣解作为最终解。最终解主要有三种方法,第一种是求非劣解的生成法,包括加权法、约束法、加权法和约束法结合的混合法以及多目标遗传算法,即先求出大量的非劣解,构成非劣解的一个子集,然后按照决策者的意图找出最终解。第二种为交互法,主要为求解线性约束多目标优化的Geoffrion法,不先求出很多的非劣解,而是通过分析者与决策者对话的方式,逐步求出最终解。第三种是事先要求决策者提供目标之间的相对重要程度,算法以此为依据,将多目标问题转化为单目标问题进行求解。

       利用进化算法求解多目标优化问题是近年来的研究热点,1967年,Rosenberg就建议采用基于进化的搜索来处理多目标优化问题,但没有具体实现。1975年,Holland提出了遗传算法,10年后,Schaffer提出了矢量评价遗传算法,第一次实现了遗传算法与多目标优化问题的结合。1989年,Goldberg在其著作《Genetic Algorithms for Search, Optimization, and Machine Learning》中,提出了把经济学中的Pareto理论与进化算法结合来求解多目标优化问题的新思路,对于后续进化多目标优化算法的研究具有重要的指导意义。目前,采用多目标进化算法求解多目标问题已成为进化计算领域中的一个热门方向,粒子群优化、蚁群算法、人工免疫系统、分布估计算法、协同进化算法、进化算法等一些新的进化算法陆续被用于求解多目标优化问题。本案例采用多目标粒子群算法求解多目标背包问题。

2 案例背景

2.1 问题描述

       假设存在五类物品,每类物品中又包含四种具体物品,现要求从这五种类别物品中分别选择一种物品放入背包中,使得背包内物品的总价值最大,总体积最小,并且背包的总质量不超过92 kg。背包问题的数学模型为

image.gif

2.2 算法流程

       基于粒子群算法的二维多目标搜索算法流程如图10-1所示。其中,种群初始化模块随机初始化粒子的位置x和速度v,适应度值计算是指根据适应度值计算公式计算个体适应度值,粒子最优更新模块根据新的粒子位置更新个体最优粒子。非劣解集更新模块根据新粒子支配关系筛选非劣解。粒子速度和位置更新模块根据个体最优粒子位置和全局粒子位置更新粒子速度和位置。

image.gif

2.3 适应度计算

       粒子适应度值参考式(10-1),每个个体的适应度值有两个,即价值和体积,同时个体须满足质量约束。

2.4 筛选非劣解集

       筛选非劣解集主要分为初始筛选非劣解集和更新非劣解集。初始筛选非劣解集是指在粒子初始化后,当一个粒子不受其他粒子支配(即不存在其他粒子的Px,Rx,均优于该粒子)时,把粒子放入非劣解集中,并且在粒子更新前从非劣解集中随机选择一个粒子作为群体最优粒子。更新非劣解集是指当新粒子不受其他粒子以及当前非劣解集中粒子的支配时,把新粒子放入非劣解集中,并且每次粒子更新前都从非劣解集中随机选择一个粒子作为群体最优粒子。

2.5 粒子速度和位置更新

       粒子更新公式如下:

image.gif

2.6 粒子最优

       粒子最优包括个体最优粒子和群体最优粒子,其中个体最优粒子的更新方式是从当前新粒子和个体最优粒子中选择支配粒子,当两个粒子都不是支配粒子时,从中随机选择一个粒子作为个体最优粒子。群体最优粒子为从非劣解集中随机选择的一个粒子。

3 MATLAB程序实现

       根据多目标搜索算法原理,在MATLAB中实现基于粒子群算法的多目标搜索算法。

%% 该函数演示多目标perota优化问题
%清空环境
clc
clear
load data
%% 初始参数
objnum=size(P,1); %类中物品个数
weight=92;        %总重量限制
%初始化程序
Dim=5;     %粒子维数
xSize=50;  %种群个数
MaxIt=200; %迭代次数
c1=0.8;    %算法参数
c2=0.8;    %算法参数 
wmax=1.2;  %惯性因子
wmin=0.1;  %惯性因子
x=unidrnd(4,xSize,Dim);  %粒子初始化
v=zeros(xSize,Dim);      %速度初始化
xbest=x;           %个体最佳值
gbest=x(1,:);      %粒子群最佳位置
% 粒子适应度值 
px=zeros(1,xSize);   %粒子价值目标
rx=zeros(1,xSize);   %粒子体积目标
cx=zeros(1,xSize);   %重量约束
% 最优值初始化
pxbest=zeros(1,xSize); %粒子最优价值目标
rxbest=zeros(1,xSize); %粒子最优体积目标
cxbest=zeros(1,xSize);  %记录重量,以求约束
% 上一次的值
pxPrior=zeros(1,xSize);%粒子价值目标
rxPrior=zeros(1,xSize);%粒子体积目标
cxPrior=zeros(1,xSize);%记录重量,以求约束
%计算初始目标向量
for i=1:xSize
    for j=1:Dim %控制类别
        px(i) = px(i)+P(x(i,j),j);  %粒子价值
        rx(i) = rx(i)+R(x(i,j),j);  %粒子体积
        cx(i) = cx(i)+C(x(i,j),j);  %粒子重量
    end
end
% 粒子最优位置
pxbest=px;rxbest=rx;cxbest=cx;
%% 初始筛选非劣解
flj=[];
fljx=[];
fljNum=0;
%两个实数相等精度
tol=1e-7;
for i=1:xSize
    flag=0;  %支配标志
    for j=1:xSize  
        if j~=i
            if ((px(i)<px(j)) &&  (rx(i)>rx(j))) ||((abs(px(i)-px(j))<tol)...
                    &&  (rx(i)>rx(j)))||((px(i)<px(j)) &&  (abs(rx(i)-rx(j))<tol)) || (cx(i)>weight) 
                flag=1;
                break;
            end
        end
    end
    %判断有无被支配
    if flag==0
        fljNum=fljNum+1;
        % 记录非劣解
        flj(fljNum,1)=px(i);flj(fljNum,2)=rx(i);flj(fljNum,3)=cx(i);
        % 非劣解位置
        fljx(fljNum,:)=x(i,:); 
    end
end
%% 循环迭代
for iter=1:MaxIt
    % 权值更新
    w=wmax-(wmax-wmin)*iter/MaxIt;
    %从非劣解中选择粒子作为全局最优解
    s=size(fljx,1);       
    index=randi(s,1,1);  
    gbest=fljx(index,:);
    %% 群体更新
    for i=1:xSize
        %速度更新
        v(i,:)=w*v(i,:)+c1*rand(1,1)*(xbest(i,:)-x(i,:))+c2*rand(1,1)*(gbest-x(i,:));
        %位置更新
        x(i,:)=x(i,:)+v(i,:);
        x(i,:) = rem(x(i,:),objnum)/double(objnum);
        index1=find(x(i,:)<=0);
        if ~isempty(index1)
            x(i,index1)=rand(size(index1));
        end
        x(i,:)=ceil(4*x(i,:));        
    end
    %% 计算个体适应度
    pxPrior(:)=0;
    rxPrior(:)=0;
    cxPrior(:)=0;
    for i=1:xSize
        for j=1:Dim %控制类别
            pxPrior(i) = pxPrior(i)+P(x(i,j),j);  %计算粒子i 价值
            rxPrior(i) = rxPrior(i)+R(x(i,j),j);  %计算粒子i 体积
            cxPrior(i) = cxPrior(i)+C(x(i,j),j);  %计算粒子i 重量
        end
    end
    %% 更新粒子历史最佳
    for i=1:xSize
        %现在的支配原有的,替代原有的
         if ((px(i)<pxPrior(i)) &&  (rx(i)>rxPrior(i))) ||((abs(px(i)-pxPrior(i))<tol)...
                 &&  (rx(i)>rxPrior(i)))||((px(i)<pxPrior(i)) &&  (abs(rx(i)-rxPrior(i))<tol)) || (cx(i)>weight) 
                xbest(i,:)=x(i,:);%没有记录目标值
                pxbest(i)=pxPrior(i);rxbest(i)=rxPrior(i);cxbest(i)=cxPrior(i);
          end
        %彼此不受支配,随机决定
        if ~( ((px(i)<pxPrior(i)) &&  (rx(i)>rxPrior(i))) ||((abs(px(i)-pxPrior(i))<tol)...
                &&  (rx(i)>rxPrior(i)))||((px(i)<pxPrior(i)) &&  (abs(rx(i)-rxPrior(i))<tol)) || (cx(i)>weight) )...
                &&  ~( ((pxPrior(i)<px(i)) &&  (rxPrior(i)>rx(i))) ||((abs(pxPrior(i)-px(i))<tol) &&  (rxPrior(i)>rx(i)))...
                ||((pxPrior(i)<px(i)) &&  (abs(rxPrior(i)-rx(i))<tol)) || (cxPrior(i)>weight) )
            if rand(1,1)<0.5
                xbest(i,:)=x(i,:);
                  pxbest(i)=pxPrior(i);rxbest(i)=rxPrior(i);cxbest(i)=cxPrior(i);
            end
        end
    end
    %% 更新非劣解集合
    px=pxPrior;
    rx=rxPrior;
    cx=cxPrior;
    %更新升级非劣解集合
    s=size(flj,1);%目前非劣解集合中元素个数
    %先将非劣解集合和xbest合并
    pppx=zeros(1,s+xSize);
    rrrx=zeros(1,s+xSize);
    cccx=zeros(1,s+xSize);
    pppx(1:xSize)=pxbest;pppx(xSize+1:end)=flj(:,1)';
    rrrx(1:xSize)=rxbest;rrrx(xSize+1:end)=flj(:,2)';
    cccx(1:xSize)=cxbest;cccx(xSize+1:end)=flj(:,3)';
    xxbest=zeros(s+xSize,Dim);
    xxbest(1:xSize,:)=xbest;
    xxbest(xSize+1:end,:)=fljx;
    %筛选非劣解
    flj=[];
    fljx=[];
    k=0;
    tol=1e-7;
    for i=1:xSize+s
        flag=0;%没有被支配
        %判断该点是否非劣
        for j=1:xSize+s 
            if j~=i
                if ((pppx(i)<pppx(j)) &&  (rrrx(i)>rrrx(j))) ||((abs(pppx(i)-pppx(j))<tol) ...
                        &&  (rrrx(i)>rrrx(j)))||((pppx(i)<pppx(j)) &&  (abs(rrrx(i)-rrrx(j))<tol)) ...
                        || (cccx(i)>weight) %有一次被支配
                    flag=1;
                    break;
                end
            end
        end
        %判断有无被支配
        if flag==0
            k=k+1;
            flj(k,1)=pppx(i);flj(k,2)=rrrx(i);flj(k,3)=cccx(i);%记录非劣解
            fljx(k,:)=xxbest(i,:);%非劣解位置
        end
    end
    %去掉重复粒子
    repflag=0;   %重复标志
    k=1;         %不同非劣解粒子数
    flj2=[];     %存储不同非劣解
    fljx2=[];    %存储不同非劣解粒子位置
    flj2(k,:)=flj(1,:);
    fljx2(k,:)=fljx(1,:);
    for j=2:size(flj,1)
        repflag=0;  %重复标志
        for i=1:size(flj2,1)
            result=(fljx(j,:)==fljx2(i,:));
            if length(find(result==1))==Dim
                repflag=1;%有重复
            end
        end
        %粒子不同,存储
        if repflag==0 
            k=k+1;
            flj2(k,:)=flj(j,:);
            fljx2(k,:)=fljx(j,:);
        end
    end
    %非劣解更新
    flj=flj2;
    fljx=fljx2;
end
%绘制非劣解分布
plot(flj(:,1),flj(:,2),'o') 
xlabel('P')
ylabel('R')
title('最终非劣解在目标空间分布')
disp('非劣解flj中三列依次为P,R,C')

image.gif

3.1 仿真结果

       本案例问题中,每类物品的价值、体积和质量如表10-1所列。

image.gif

       从每类物品中选择一个物品放入背包,使背包的总价值最大,体积最小,并且背包总质量小于92kg。粒子群算法参数为:粒子个数为50,迭代次数为200,最终得到的非劣解在目标空间中的分布如图10-2所示。

image.gif

由图10-2可知,算法搜索到的非劣解构成了Pareto面,算法搜索取得了很好的效果。

4 延伸阅读

       多目标搜索算法相对于单目标算法来说,更加贴近于实际问题,求解结果更具有参考价值。通过多目标搜索算法最终得到的不是一个最优解,而是一个非劣解集,需要从非劣解集中根据实际问题的需要选择一个解作为该问题的最终解。常用的基于进化算法的多目标搜索算法除了本案例介绍的方法之外,还有基于遗传算法的多目标搜索算法、基于免疫算法的多目标搜索算法等。

目录
打赏
0
0
0
0
38
分享
相关文章
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于BBO生物地理优化的三维路径规划算法MATLAB仿真
本程序基于BBO生物地理优化算法,实现三维空间路径规划的MATLAB仿真(测试版本:MATLAB2022A)。通过起点与终点坐标输入,算法可生成避障最优路径,并输出优化收敛曲线。BBO算法将路径视为栖息地,利用迁移和变异操作迭代寻优。适应度函数综合路径长度与障碍物距离,确保路径最短且安全。程序运行结果完整、无水印,适用于科研与教学场景。
基于NSGAII的的柔性作业调度优化算法MATLAB仿真,仿真输出甘特图
本程序基于NSGA-II算法实现柔性作业调度优化,适用于多目标优化场景(如最小化完工时间、延期、机器负载及能耗)。核心代码完成任务分配与甘特图绘制,支持MATLAB 2022A运行。算法通过初始化种群、遗传操作和选择策略迭代优化调度方案,最终输出包含完工时间、延期、机器负载和能耗等关键指标的可视化结果,为制造业生产计划提供科学依据。
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
基于入侵野草算法的KNN分类优化matlab仿真
本程序基于入侵野草算法(IWO)优化KNN分类器,通过模拟自然界中野草的扩散与竞争过程,寻找最优特征组合和超参数。核心步骤包括初始化、繁殖、变异和选择,以提升KNN分类效果。程序在MATLAB2022A上运行,展示了优化后的分类性能。该方法适用于高维数据和复杂分类任务,显著提高了分类准确性。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
基于GA遗传算法的斜拉桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现斜拉桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率ηq(0.95≤ηq≤1.05)的要求,目标是使ηq尽量接近1,同时减少加载车辆数量和布载耗时。程序通过迭代优化计算车辆位置、方向、类型及占用车道等参数,并展示适应度值收敛过程。测试版本为MATLAB2022A,包含核心代码与运行结果展示。优化模型综合考虑车辆总重量、间距及桥梁允许载荷密度等约束条件,确保布载方案科学合理。
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
117 31

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等