【ADMM、碳排放】基于分布式ADMM算法的考虑碳排放交易的电力系统优化调度研究【IEEE6节点、IEEE30节点、IEEE118节点】(Matlab代码实现)

简介: 【ADMM、碳排放】基于分布式ADMM算法的考虑碳排放交易的电力系统优化调度研究【IEEE6节点、IEEE30节点、IEEE118节点】(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果


🎉3 参考文献


🌈4 Matlab代码、数据、文章讲解


💥1 概述

文献来源:


f1d07409d05142498d5a5b1db54cc657.png


摘要:


该文提出一种分布式交变方向乘数法(ADMMs)方法,用于解决含碳排放交易的直流动态最优潮流(dc-DOPF-CET)问题。通常,基于ADMM的分布式方法在相邻子系统之间公开边界总线和分支信息。与这些方法相反,所提出的方法(dc-ADMM-P)采用了一种新的策略,即使用共识ADMM求解dc-DOPF-CET的对偶,同时仅公开相邻子系统之间的边界分支信息。此外,通过减少双乘法器的数量并采用改进的乘法器更新步骤,提高了dc-ADMM-P的收敛性能。DC-ADMM-P 在 6 到 1062 条总线的案例中进行了测试,并与其他分布式/分布式方法进行了比较。仿真结果验证了dc-ADMM-P在解决具有复(非线性)因子的dc-DOPF问题方面的高效率,这些因子可以表述为凸可分函数。同时,通过减少双乘数的数量和采用新的乘法器更新策略,展示了收敛性能的提高。


原文摘要:


Abstract:


This article presents a distributed alternating direction method of multipliers (ADMMs) approach for solving the direct current dynamic optimal power flow with carbon emission trading (dc-DOPF-CET) problem. Generally, the ADMM-based distributed approaches disclose boundary buses and branches information among adjacent subsystems. As opposed to these methods, the proposed method (dc-ADMM-P) adopts a novel strategy which uses consensus ADMM to solve the dual of dc-DOPF-CET while only discloses boundary branches information among adjacent subsystems. Moreover, the convergence performance of dc-ADMM-P is improved by reducing the number of dual multipliers and employing an improved update step of the multiplier. DC-ADMM-P is tested on cases ranging from 6 to 1062 buses, with comparison with other distributed/decentralized methods. The simulation results verify the high efficiency of dc-ADMM-P in solving the dc-DOPF problem with complex (nonlinear) factors which can be formulated as convex separable functions. Meanwhile, it also shows the improvement of convergence performance by reducing the number of dual multipliers and employing a new update strategy for the multiplier.


ADMM非常适合分布式凸优化,特别是对于OPF [22],[23]等大规模问题。这种方法是在1970年代开发的,起源于1950年代[24]。它可以被视为尝试将双重分解和增强拉格朗日方法的优点混合在一起,以实现约束优化。有趣的是,在没有调谐的情况下,ADMM可以在某些问题上与最知名的方法竞争。在[13]中,ADMM的一般形式被引入,并从两块ADMM扩展到N块ADMM。此外,本文还重点介绍了两种基于ADMM的分布式并行优化算法:共识ADMM(C-ADMM)和雅可比近端ADMM(JP-ADMM)。C-ADMM和JP-ADMM在DC-OPF中的数值结果表明,ADMM作为电网分布式并行算法是有效的。[7]中提出了一种没有中央控制器的完全分布式基于共识的ADMM,用于具有需求响应(DR)的dc-OPF。该方法采用一种新的通信策略,通过全局共识变量进行协调,即相邻子系统边界总线上的相位角。在[14]中,提出了基于ADMM结合顺序凸近似的D-OPF。集中式OPF被分解为对应于每个总线的子问题,其中子问题的解决方案与总线之间的光通信协议进行协调。在 [15] 中,基于 ADMM 的算法已应用于 OPF。


📚2 运行结果

2.1 数据来源:

​​​​​​​%             FileName = 'SCUC_dat/SCUC6.txt';    %Corresponding to the 6-bus System;对应文中6bus例子
%             FileName = 'SCUC_dat/SCUC30.txt'; %Corresponding to the 30-bus System;对应文中30bus例子
%             FileName = 'SCUC_dat/SCUC6-2.txt';  %Corresponding to the 6-bus System in literature [7];对应文献[7]中的6-bus system
%             FileName = 'SCUC_dat/SCUC1062-2.txt';  %Corresponding to the 1062-bus System;对应文中1062-bus例子
%             FileName = 'SCUC_dat/RTS48.txt'; %Corresponding to the RTS-48 bus system.The test system can obtain from [44];对应文中RTS0-48 bus例子
            FileName = 'SCUC_dat/DDOPF118.txt'; %Corresponding to the 118-bus system in literature [7];对应文献[7]中的118-bus system


​​​​​​​%             FileName = 'SCUC_dat/SCUC6.txt';    %Corresponding to the 6-bus System;对应文中6bus例子
%             FileName = 'SCUC_dat/SCUC30.txt'; %Corresponding to the 30-bus System;对应文中30bus例子
%             FileName = 'SCUC_dat/SCUC6-2.txt';  %Corresponding to the 6-bus System in literature [7];对应文献[7]中的6-bus system
%             FileName = 'SCUC_dat/SCUC1062-2.txt';  %Corresponding to the 1062-bus System;对应文中1062-bus例子
%             FileName = 'SCUC_dat/RTS48.txt'; %Corresponding to the RTS-48 bus system.The test system can obtain from [44];对应文中RTS0-48 bus例子
            FileName = 'SCUC_dat/DDOPF118.txt'; %Corresponding to the 118-bus system in literature [7];对应文献[7]中的118-bus system

1dcc0d69961c4e82b81fbea05f4695fa.pngc63e49a9970d4aa8a7298ea8118b6831.pngdf0171c716e14b0ab177eb8fd2c41c7c.pnga9b83ec5c8c347fd8d15a73a8e37f839.png


部分代码:

%Read datas
            FileIndex = strfind(FileName,'/');
            if isequal(FileName(FileIndex+1:FileIndex+5),'DDOPF') 
                %Corresponding to the 'SCUC_dat/DDOPF.......txt' files;DDOPF数据不考虑CET,但考虑DR;;不存在一个节点上有多个机组的情况
                isRTS = 'no'; %默认值,default value is 'no'
                includeDR = 'yes'; %默认值,default value is 'yes'
                includeCet = 'no'; %默认值,default value is 'no'
                parameter.includeDR = includeDR;
                parameter.includeCet = includeCet;
                parameter.isRTS = isRTS;
                SCUC_data = ReadDataDCDOPF(FileName,parameter);
            elseif isequal(FileName(FileIndex+1:FileIndex+3),'RTS')
                %%Corresponding to the 'SCUC_dat/RTS.......txt' files;RTS数据不考虑CET和DR;存在一个节点上有多个机组的情况
                isRTS = 'yes';  %是否使用RTS数据,'yes'为使用RTS数据,'no'为不适用RTS数据。,default value is 'yes'
                includeDR = 'no'; %默认值,default value is 'no'
                includeCet = 'no'; %默认值,default value is 'no'
                parameter.isRTS = isRTS;
                parameter.includeDR = includeDR;
                parameter.includeCet = includeCet;
                SCUC_data = ReadDataDCDOPF(FileName,parameter);
            elseif isequal(FileName(FileIndex+1:FileIndex+4),'SCUC')%SCUC数据
                %%Corresponding to the 'SCUC_dat/SCUC.......txt' files;本文SCUC数据,不考虑DR;不存在一个节点上有多个机组的情况
                isRTS = 'no'; %默认值,default value is 'no'
                includeDR = 'no'; %默认值,default value is 'no'
                parameter.includeDR = includeDR;
                parameter.includeCet = includeCet;
                SCUC_data = ReadDataSCUC(FileName,parameter);
            end
            T = SCUC_data.totalLoad.T;  % The number of time periods. 时段数T
            G = SCUC_data.units.N;      % The total number of units.发电机数
            N = SCUC_data.baseparameters.busN;  % The total number of buses.节点总数
            %The partition in test system; 下面的代码生成{1,...,N}的一个划分 PI
            best_partition = 1;     % Default value is 1;=1 直接按照最好的划分方式划分   =0,则按照给定n来划分
            [PI, allNode,PINumber] = partitionNode(SCUC_data.baseparameters.busN,N,best_partition,partionMethod);
            n = size(PI,1);  %The number of partition set; 划分的子集个数
            %Calculate the network admittance matrix;获取潮流节点导纳矩阵B
            Y = SCUC_nodeY(SCUC_data, type_of_pf);
            B = -Y.B;
            %Corresponding to the section III-C. Identifying "real" coupling constraints.  识别耦合节点  和耦合支路,片区改进
            [partitionData] = partitionDataPI(SCUC_data, PI ,PINumber,useImprovedPratition,includeDR,isRTS);
            %Corresponding to (17). 形成系数矩阵A  A_ii 潮流方程中可分离的那部分    A_wan是DC潮流中所有的耦合约束    A_wan_0是A_wan 中对应排放变量x0的系数矩阵
            [A_wan_0, A_wan_i, A_ii, b_A_ii, b_A_wan_i] = formMatrixA(SCUC_data, partitionData,n ,B,includeDR,isRTS);
            %Corresponding to (18) in final manuscript. 下面形成系数矩阵M  
            [M_wan_0, M_wan_i, M_ii, b_M_ii, b_M_wan_i] = formMatrixM(SCUC_data, partitionData,n ,B,includeDR,isRTS);
            %Corresponding to (19). 下面形成排放二次约束
            QC4Emission = formQC4Emission(SCUC_data, partitionData,n,includeCet,includeDR,isRTS);
            %Solving test system with Cplex;集中式让Cplex求,Cplex计算结果作为参照值,参数意义见函数yanZheng内的说明
            [ eb,es,xx,st,dr,hr,fval,pf,pf_t,fd_t,output ] = yanZheng( A_wan_i, A_ii, b_A_ii, b_A_wan_i, M_wan_i, M_ii, b_M_ii, b_M_wan_i, partitionData, SCUC_data ,B,includeCet,includeDR,isRTS,QC4Emission);
            p_index = find(~ismember(xx(:,1),0)==1);  %RP用到了
            disp(output.cplexstatusstring);


%Read datas
            FileIndex = strfind(FileName,'/');
            if isequal(FileName(FileIndex+1:FileIndex+5),'DDOPF') 
                %Corresponding to the 'SCUC_dat/DDOPF.......txt' files;DDOPF数据不考虑CET,但考虑DR;;不存在一个节点上有多个机组的情况
                isRTS = 'no'; %默认值,default value is 'no'
                includeDR = 'yes'; %默认值,default value is 'yes'
                includeCet = 'no'; %默认值,default value is 'no'
                parameter.includeDR = includeDR;
                parameter.includeCet = includeCet;
                parameter.isRTS = isRTS;
                SCUC_data = ReadDataDCDOPF(FileName,parameter);
            elseif isequal(FileName(FileIndex+1:FileIndex+3),'RTS')
                %%Corresponding to the 'SCUC_dat/RTS.......txt' files;RTS数据不考虑CET和DR;存在一个节点上有多个机组的情况
                isRTS = 'yes';  %是否使用RTS数据,'yes'为使用RTS数据,'no'为不适用RTS数据。,default value is 'yes'
                includeDR = 'no'; %默认值,default value is 'no'
                includeCet = 'no'; %默认值,default value is 'no'
                parameter.isRTS = isRTS;
                parameter.includeDR = includeDR;
                parameter.includeCet = includeCet;
                SCUC_data = ReadDataDCDOPF(FileName,parameter);
            elseif isequal(FileName(FileIndex+1:FileIndex+4),'SCUC')%SCUC数据
                %%Corresponding to the 'SCUC_dat/SCUC.......txt' files;本文SCUC数据,不考虑DR;不存在一个节点上有多个机组的情况
                isRTS = 'no'; %默认值,default value is 'no'
                includeDR = 'no'; %默认值,default value is 'no'
                parameter.includeDR = includeDR;
                parameter.includeCet = includeCet;
                SCUC_data = ReadDataSCUC(FileName,parameter);
            end
            T = SCUC_data.totalLoad.T;  % The number of time periods. 时段数T
            G = SCUC_data.units.N;      % The total number of units.发电机数
            N = SCUC_data.baseparameters.busN;  % The total number of buses.节点总数
            %The partition in test system; 下面的代码生成{1,...,N}的一个划分 PI
            best_partition = 1;     % Default value is 1;=1 直接按照最好的划分方式划分   =0,则按照给定n来划分
            [PI, allNode,PINumber] = partitionNode(SCUC_data.baseparameters.busN,N,best_partition,partionMethod);
            n = size(PI,1);  %The number of partition set; 划分的子集个数
            %Calculate the network admittance matrix;获取潮流节点导纳矩阵B
            Y = SCUC_nodeY(SCUC_data, type_of_pf);
            B = -Y.B;
            %Corresponding to the section III-C. Identifying "real" coupling constraints.  识别耦合节点  和耦合支路,片区改进
            [partitionData] = partitionDataPI(SCUC_data, PI ,PINumber,useImprovedPratition,includeDR,isRTS);
            %Corresponding to (17). 形成系数矩阵A  A_ii 潮流方程中可分离的那部分    A_wan是DC潮流中所有的耦合约束    A_wan_0是A_wan 中对应排放变量x0的系数矩阵
            [A_wan_0, A_wan_i, A_ii, b_A_ii, b_A_wan_i] = formMatrixA(SCUC_data, partitionData,n ,B,includeDR,isRTS);
            %Corresponding to (18) in final manuscript. 下面形成系数矩阵M  
            [M_wan_0, M_wan_i, M_ii, b_M_ii, b_M_wan_i] = formMatrixM(SCUC_data, partitionData,n ,B,includeDR,isRTS);
            %Corresponding to (19). 下面形成排放二次约束
            QC4Emission = formQC4Emission(SCUC_data, partitionData,n,includeCet,includeDR,isRTS);
            %Solving test system with Cplex;集中式让Cplex求,Cplex计算结果作为参照值,参数意义见函数yanZheng内的说明
            [ eb,es,xx,st,dr,hr,fval,pf,pf_t,fd_t,output ] = yanZheng( A_wan_i, A_ii, b_A_ii, b_A_wan_i, M_wan_i, M_ii, b_M_ii, b_M_wan_i, partitionData, SCUC_data ,B,includeCet,includeDR,isRTS,QC4Emission);
            p_index = find(~ismember(xx(:,1),0)==1);  %RP用到了
            disp(output.cplexstatusstring);


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]L. Yang, J. Luo, Y. Xu, Z. Zhang and Z. Dong, "A Distributed Dual Consensus ADMM Based on Partition for DC-DOPF With Carbon Emission Trading," in IEEE Transactions on Industrial Informatics, vol. 16, no. 3, pp. 1858-1872, March 2020, doi: 10.1109/TII.2019.2937513.


🌈4 Matlab代码、数据、文章讲解


相关文章
|
2天前
|
机器学习/深度学习 算法
基于BP神经网络的QPSK解调算法matlab性能仿真
该文介绍了使用MATLAB2022a实现的QPSK信号BP神经网络解调算法。QPSK调制信号在复杂信道环境下受到干扰,BP网络能适应性地补偿失真,降低误码率。核心程序涉及数据分割、网络训练及性能评估,最终通过星座图和误码率曲线展示结果。
|
3天前
|
机器学习/深度学习 算法 计算机视觉
基于yolov2深度学习网络模型的鱼眼镜头中人员检测算法matlab仿真
该内容是一个关于基于YOLOv2的鱼眼镜头人员检测算法的介绍。展示了算法运行的三张效果图,使用的是matlab2022a软件。YOLOv2模型结合鱼眼镜头畸变校正技术,对鱼眼图像中的人员进行准确检测。算法流程包括图像预处理、网络前向传播、边界框预测与分类及后处理。核心程序段加载预训练的YOLOv2检测器,遍历并处理图像,检测到的目标用矩形标注显示。
|
6天前
|
算法
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
MATLAB 2022a仿真实现了LDPC码的性能分析,展示了不同码长对纠错能力的影响。短码长LDPC码收敛快但纠错能力有限,长码长则提供更强纠错能力但易陷入局部最优。核心代码通过循环进行误码率仿真,根据EsN0计算误比特率,并保存不同码长(12-768)的结果数据。
26 9
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
|
7天前
|
算法
MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型
这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。
|
9天前
|
算法 Go 分布式数据库
构建高可用的分布式数据库集群:使用Go语言与Raft共识算法
随着数据量的爆炸式增长,单一数据库服务器已难以满足高可用性和可扩展性的需求。在本文中,我们将探讨如何使用Go语言结合Raft共识算法来构建一个高可用的分布式数据库集群。我们不仅会介绍Raft算法的基本原理,还会详细阐述如何利用Go语言的并发特性和网络编程能力来实现这一目标。此外,我们还将分析构建过程中可能遇到的挑战和解决方案,为读者提供一个完整的实践指南。
|
9天前
|
数据可视化 算法
MATLAB Simulink 交交变流电路性能研究
MATLAB Simulink 交交变流电路性能研究
13 2
|
9天前
|
数据可视化 算法
MATLAB Simulink 直流斩波电路性能研究
MATLAB Simulink 直流斩波电路性能研究
20 1
|
9天前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
9天前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)