💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,a半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码实现
💥1 概述
随着经济快速增长,电力需求急剧增加,这给输配电网带来了巨大的扩容投资压力[1]。电力系统高峰负荷十分集中,要满足尖峰段负荷需求, 就必须加大系统容量建设,这不仅带来了巨大的投资要求,也使得电网现有的设备利用率低下,部分设备只在高峰时段运行。配电网多采用环状结构,开环运行,在配电线路沿馈线设有一定数量的常闭分段开关,馈线之间装有常开的联络开关。配电网重构技术不需增加额外投资,只需调整配电网中的开关状态,就可达到优化运行结构、平衡电力负荷、降低网络损耗、提高 电 压 质 量 的 目 的。理论上,任 何 一 个 配电网都存在一个最优的网络结构,在这个最优结构下,各负荷点的运行电压、网络损耗和负荷平衡的协调均优于其
他可行方案。当负荷变化时,这个最优结构也将变化,因此计算出这个最优结构,以使配电网尽可能地运行在最优状态。
主动配电网进行网络重构的目标有多种,主要包括:降低网络有功损耗,降低系统一定时间段内能量损耗,使线路负载均衡,提高系统供电可靠性,以及提高电压稳定性等。对应的优化目标函数可以用如下数学形式进行表示。
📚2 运行结果
IEEE33节点:
function mpc = IEEE33 %% MATPOWER Case Format : Version 2 mpc.version = '2'; %%----- Power Flow Data -----%% %% system MVA base mpc.baseMVA = 10; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ %% (Pd and Qd are specified in kW & kVAr here, converted to MW & MVAr below) 1 3 0 0 0 0 1 1 0 12.66 1 1 1; 2 1 100 60 0 0 1 1 0 12.66 1 1.1 0.9; 3 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9; 4 1 120 80 0 0 1 1 0 12.66 1 1.1 0.9; 5 1 60 30 0 0 1 1 0 12.66 1 1.1 0.9; 6 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9; 7 1 200 100 0 0 1 1 0 12.66 1 1.1 0.9; 8 1 200 100 0 0 1 1 0 12.66 1 1.1 0.9; 9 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9; 10 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9; 11 1 45 30 0 0 1 1 0 12.66 1 1.1 0.9; 12 1 60 35 0 0 1 1 0 12.66 1 1.1 0.9; 13 1 60 35 0 0 1 1 0 12.66 1 1.1 0.9; 14 1 120 80 0 0 1 1 0 12.66 1 1.1 0.9; 15 1 60 10 0 0 1 1 0 12.66 1 1.1 0.9; 16 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9; 17 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9; 18 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9; 19 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9; 20 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9; 21 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9; 22 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9; 23 1 90 50 0 0 1 1 0 12.66 1 1.1 0.9; 24 1 420 200 0 0 1 1 0 12.66 1 1.1 0.9; 25 1 420 200 0 0 1 1 0 12.66 1 1.1 0.9; 26 1 60 25 0 0 1 1 0 12.66 1 1.1 0.9; 27 1 60 25 0 0 1 1 0 12.66 1 1.1 0.9; 28 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9; 29 1 120 70 0 0 1 1 0 12.66 1 1.1 0.9; 30 1 200 600 0 0 1 1 0 12.66 1 1.1 0.9; 31 1 150 70 0 0 1 1 0 12.66 1 1.1 0.9; 32 1 210 100 0 0 1 1 0 12.66 1 1.1 0.9; 33 1 60 40 0 0 1 1 0 12.66 1 1.1 0.9; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin Pc1 Pc2 Qc1min Qc1max Qc2min Qc2max ramp_agc ramp_10 ramp_30 ramp_q apf mpc.gen = [ 1 0 0 10 -10 1 100 1 10 0 0 0 0 0 0 0 0 0 0 0 0; ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ %% (r and x specified in ohms here, converted to p.u. below) 1 2 0.0922 0.0470 0 0 0 0 0 0 1 -360 360; 2 3 0.4930 0.2511 0 0 0 0 0 0 1 -360 360; 3 4 0.3660 0.1864 0 0 0 0 0 0 1 -360 360; 4 5 0.3811 0.1941 0 0 0 0 0 0 1 -360 360; 5 6 0.8190 0.7070 0 0 0 0 0 0 1 -360 360; 6 7 0.1872 0.6188 0 0 0 0 0 0 1 -360 360; 7 8 0.7114 0.2351 0 0 0 0 0 0 1 -360 360; 8 9 1.0300 0.7400 0 0 0 0 0 0 1 -360 360; 9 10 1.0440 0.7400 0 0 0 0 0 0 1 -360 360; 10 11 0.1966 0.0650 0 0 0 0 0 0 1 -360 360; 11 12 0.3744 0.1238 0 0 0 0 0 0 1 -360 360; 12 13 1.4680 1.1550 0 0 0 0 0 0 1 -360 360; 13 14 0.5416 0.7129 0 0 0 0 0 0 1 -360 360; 14 15 0.5910 0.5260 0 0 0 0 0 0 1 -360 360; 15 16 0.7463 0.5450 0 0 0 0 0 0 1 -360 360; 16 17 1.2890 1.7210 0 0 0 0 0 0 1 -360 360; 17 18 0.7320 0.5740 0 0 0 0 0 0 1 -360 360; 2 19 0.1640 0.1565 0 0 0 0 0 0 1 -360 360; 19 20 1.5042 1.3554 0 0 0 0 0 0 1 -360 360; 20 21 0.4095 0.4784 0 0 0 0 0 0 1 -360 360; 21 22 0.7089 0.9373 0 0 0 0 0 0 1 -360 360; 3 23 0.4512 0.3083 0 0 0 0 0 0 1 -360 360; 23 24 0.8980 0.7091 0 0 0 0 0 0 1 -360 360; 24 25 0.8960 0.7011 0 0 0 0 0 0 1 -360 360; 6 26 0.2030 0.1034 0 0 0 0 0 0 1 -360 360; 26 27 0.2842 0.1447 0 0 0 0 0 0 1 -360 360; 27 28 1.0590 0.9337 0 0 0 0 0 0 1 -360 360; 28 29 0.8042 0.7006 0 0 0 0 0 0 1 -360 360; 29 30 0.5075 0.2585 0 0 0 0 0 0 1 -360 360; 30 31 0.9744 0.9630 0 0 0 0 0 0 1 -360 360; 31 32 0.3105 0.3619 0 0 0 0 0 0 1 -360 360; 32 33 0.3410 0.5302 0 0 0 0 0 0 1 -360 360; 21 8 2.0000 2.0000 0 0 0 0 0 0 0 -360 360; 9 15 2.0000 2.0000 0 0 0 0 0 0 0 -360 360; 12 22 2.0000 2.0000 0 0 0 0 0 0 0 -360 360; 18 33 0.5000 0.5000 0 0 0 0 0 0 0 -360 360; 25 29 0.5000 0.5000 0 0 0 0 0 0 0 -360 360; ]; %%----- OPF Data -----%% %% generator cost data % 1 startup shutdown n x1 y1 ... xn yn % 2 startup shutdown n c(n-1) ... c0 mpc.gencost = [ 2 0 0 3 0 20 0; ]; %% convert branch impedances from Ohms to p.u. [PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ... VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus; [F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, RATE_C, ... TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST, ... ANGMIN, ANGMAX, MU_ANGMIN, MU_ANGMAX] = idx_brch; Vbase = mpc.bus(1, BASE_KV) * 1e3; %% in Volts Sbase = mpc.baseMVA * 1e6; %% in VA mpc.branch(:, [BR_R BR_X]) = mpc.branch(:, [BR_R BR_X]) / (Vbase^2 / Sbase); %% convert loads from kW to MW mpc.bus(:, [PD, QD]) = mpc.bus(:, [PD, QD]) / 1e3;
function mpc = IEEE33 %% MATPOWER Case Format : Version 2 mpc.version = '2'; %%----- Power Flow Data -----%% %% system MVA base mpc.baseMVA = 10; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ %% (Pd and Qd are specified in kW & kVAr here, converted to MW & MVAr below) 1 3 0 0 0 0 1 1 0 12.66 1 1 1; 2 1 100 60 0 0 1 1 0 12.66 1 1.1 0.9; 3 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9; 4 1 120 80 0 0 1 1 0 12.66 1 1.1 0.9; 5 1 60 30 0 0 1 1 0 12.66 1 1.1 0.9; 6 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9; 7 1 200 100 0 0 1 1 0 12.66 1 1.1 0.9; 8 1 200 100 0 0 1 1 0 12.66 1 1.1 0.9; 9 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9; 10 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9; 11 1 45 30 0 0 1 1 0 12.66 1 1.1 0.9; 12 1 60 35 0 0 1 1 0 12.66 1 1.1 0.9; 13 1 60 35 0 0 1 1 0 12.66 1 1.1 0.9; 14 1 120 80 0 0 1 1 0 12.66 1 1.1 0.9; 15 1 60 10 0 0 1 1 0 12.66 1 1.1 0.9; 16 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9; 17 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9; 18 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9; 19 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9; 20 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9; 21 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9; 22 1 90 40 0 0 1 1 0 12.66 1 1.1 0.9; 23 1 90 50 0 0 1 1 0 12.66 1 1.1 0.9; 24 1 420 200 0 0 1 1 0 12.66 1 1.1 0.9; 25 1 420 200 0 0 1 1 0 12.66 1 1.1 0.9; 26 1 60 25 0 0 1 1 0 12.66 1 1.1 0.9; 27 1 60 25 0 0 1 1 0 12.66 1 1.1 0.9; 28 1 60 20 0 0 1 1 0 12.66 1 1.1 0.9; 29 1 120 70 0 0 1 1 0 12.66 1 1.1 0.9; 30 1 200 600 0 0 1 1 0 12.66 1 1.1 0.9; 31 1 150 70 0 0 1 1 0 12.66 1 1.1 0.9; 32 1 210 100 0 0 1 1 0 12.66 1 1.1 0.9; 33 1 60 40 0 0 1 1 0 12.66 1 1.1 0.9; ];
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]朱俊澎. 主动配电网重构与孤岛划分研究[D].东南大学,2018.
[2]葛鹏江,张树永,董晓晶,靳盘龙.基于鲁棒优化的配网重构二阶锥规划模型[J].电力科学与技术学报,2018,33(04):50-57.
[3]荣德生,胡举爽.配电网重构的凸模型[J].电源学报,2016,14(03):131-136.DOI:10.13234/j.issn.2095-2805.2016.3.131.
[4]向佳霓,赵建立,顾霈,王隗东,陈珂,张洪志.考虑需求响应的配电网重构经济性和可靠性研究[J].电工技术,2022(19):20-23.DOI:10.19768/j.cnki.dgjs.2022.19.006.