MySQL精选面试:为什么需要B+树?其他结构不行吗

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: MySQL精选面试:为什么需要B+树?其他结构不行吗

640.png

MySql面试精选 13-19



题号 题目
13 Mysql如何保证一致性和持久性
14 为什么选择B+树作为索引结构
15 InnoDB的行锁模式
16 哈希(hash)比树(tree)更快,索引结构为什么要设计成树型
17 为什么索引的key长度不能太长
18 Mysql的数据如何恢复到任意时间点


19 Mysql为什么加了索引可以加快查询


13. Mysql如何保证一致性和持久性


Mysql为了保证ACID中的一致性和持久性,使用了WAL(Write-Ahead Logging,先写日志再写磁盘)。Redo log就是一种WAL的应用。


当数据库忽然掉电,再重新启动时,Mysql可以通过Redo log还原数据。也就是说,每次事务提交时,不用同步刷新磁盘数据文件,只需要同步刷新Redo log就足够了。


14. 为什么选择B+树作为索引结构


  1. Hash索引:Hash索引底层是哈希表,哈希表是一种以key-value存储数据的结构,所以多个数据在存储关系上是完全没有任何顺序关系的,所以,对于区间查询是无法直接通过索引查询的,就需要全表扫描。所以,哈希索引只适用于等值查询的场景。而B+ 树是一种多路平衡查询树,所以他的节点是天然有序的(左子节点小于父节点、父节点小于右子节点),所以对于范围查询的时候不需要做全表扫描
  2. 二叉查找树:解决了排序的基本问题,但是由于无法保证平衡,可能退化为链表。
  3. 平衡二叉树:通过旋转解决了平衡的问题,但是旋转操作效率太低。
  4. 红黑树:通过舍弃严格的平衡和引入红黑节点,解决了AVL旋转效率过低的问题,但是在磁盘等场景下,树仍然太高,IO次数太多。
  5. B+树:在B树的基础上,将非叶节点改造为不存储数据纯索引节点,进一步降低了树的高度;此外将叶节点使用指针连接成链表,范围查询更加高效。此外, B+树, 主要是查询效率高,O(logN),可以充分利用磁盘预读的特性,多叉树,深度小,叶子结点有序且存储数据.


15. InnoDB的行锁模式


  1. 共享锁(S):用法lock in share mode,又称读锁,允许一个事务去读一行,阻止其他事务获得相同数据集的排他锁。


若事务T对数据对象A加上S锁,则事务T可以读A但不能修改A,其他事务只能再对A加S锁,而不能加X锁,直到T释放A上的S锁。这保证了其他事务可以读A,但在T释放A上的S锁之前不能对A做任何修改。


  1. 排他锁(X):用法for update,又称写锁,允许获取排他锁的事务更新数据,阻止其他事务取得相同的数据集共享读锁和排他写锁。若事务T对数据对象A加上X锁,事务T可以读A也可以修改A,其他事务不能再对A加任何锁,直到T释放A上的锁。在没有索引的情况下,InnoDB只能使用表锁。


16. 哈希(hash)比树(tree)更快,索引结构为什么要设计成树型


加速查找速度的数据结构,常见的有两类:


  • 哈希,例如HashMap,查询/插入/修改/删除的平均时间复杂度都是O(1);
  • 树,例如平衡二叉搜索树,查询/插入/修改/删除的平均时间复杂度都是O(lg(n));


哈希只能满足等值查询, 不满足范围和大小查询, 其次哈希不可以排序.

Mysql是用等值查询,用树的话,等值查询只需要顺序遍历即可.

但是对于排序查询的sql需求:分组:group by ,排序:order by ,比较:<、>等,哈希型的索引,时间复杂度会退化为O(n),而树型的“有序”特性,依然能够保持O(log(n)) 的高效率。


17. 为什么索引的key长度不能太长


key 太长会导致一个页当中能够存放的 key 的数目变少,间接导致索引树的页数目变多,索引层次增加,从而影响整体查询变更的效率。


18. Mysql的数据如何恢复到任意时间点


恢复到任意时间点以定时的做全量备份,以及备份增量的 binlog 日志为前提。恢复到任意时间点首先将全量备份恢复之后,再此基础上回放增加的 binlog 直至指定的时间点。


19. Mysql为什么加了索引可以加快查询


在数据十分庞大的时候,索引可以大大加快查询的速度,这是因为使用索引后可以不用扫描全表来定位某行的数据,而是先通过索引表找到该行数据对应的物理地址然后访问相应的数据。

索引的优缺点:


优势:可以快速检索,减少I/O次数,加快检索速度;根据索引分组和排序,可以加快分组和排序;


劣势:索引本身也是表,因此会占用存储空间,一般来说,索引表占用的空间的数据表的1.5倍;索引表的维护和创建需要时间成本,这个成本随着数据量增大而增大;构建索引会降低数据表的修改操作(删除,添加,修改)的效率,因为在修改数据表的同时还需要修改索引表.

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
24天前
|
存储 SQL 关系型数据库
MySQL底层概述—2.InnoDB磁盘结构
InnoDB磁盘结构主要包括表空间(Tablespaces)、数据字典(Data Dictionary)、双写缓冲区(Double Write Buffer)、重做日志(redo log)和撤销日志(undo log)。其中,表空间分为系统、独立、通用、Undo及临时表空间,分别用于存储不同类型的数据。数据字典从MySQL 8.0起不再依赖.frm文件,转而使用InnoDB引擎存储,支持事务原子性DDL操作。
205 100
MySQL底层概述—2.InnoDB磁盘结构
|
24天前
|
缓存 算法 关系型数据库
MySQL底层概述—1.InnoDB内存结构
本文介绍了InnoDB引擎的关键组件和机制,包括引擎架构、Buffer Pool、Page管理机制、Change Buffer、Log Buffer及Adaptive Hash Index。
216 97
MySQL底层概述—1.InnoDB内存结构
|
3月前
|
存储 SQL 关系型数据库
MySQL进阶突击系列(03) MySQL架构原理solo九魂17环连问 | 给大厂面试官的一封信
本文介绍了MySQL架构原理、存储引擎和索引的相关知识点,涵盖查询和更新SQL的执行过程、MySQL各组件的作用、存储引擎的类型及特性、索引的建立和使用原则,以及二叉树、平衡二叉树和B树的区别。通过这些内容,帮助读者深入了解MySQL的工作机制,提高数据库管理和优化能力。
|
2月前
|
存储 关系型数据库 MySQL
美团面试:MySQL为什么 不用 Docker部署?
45岁老架构师尼恩在读者交流群中分享了关于“MySQL为什么不推荐使用Docker部署”的深入分析。通过系统化的梳理,尼恩帮助读者理解为何大型MySQL数据库通常不使用Docker部署,主要涉及性能、管理复杂度和稳定性等方面的考量。文章详细解释了有状态容器的特点、Docker的资源隔离问题以及磁盘IO性能损耗,并提供了小型MySQL使用Docker的最佳实践。此外,尼恩还介绍了Share Nothing架构的优势及其应用场景,强调了配置管理和数据持久化的挑战。最后,尼恩建议读者参考《尼恩Java面试宝典PDF》以提升技术能力,更好地应对面试中的难题。
|
4月前
|
SQL 关系型数据库 MySQL
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
MySQL慢查询优化、索引优化,是必知必备,大厂面试高频,本文深入详解,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验分享。
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
|
20天前
|
SQL 关系型数据库 MySQL
京东面试:MySQL MVCC是如何实现的?如何通过MVCC实现读已提交、可重复读隔离级别的?
1.请解释什么是MVCC,它在数据库中的作用是什么? 2.在MySQL中,MVCC是如何实现的?请简述其工作原理。 3.MVCC是如何解决读-写和写-写冲突的? 4.在并发环境中,当多个事务同时读取同一行数据时,MVCC是如何保证每个事务看到的数据版本是一致的? 5.MVCC如何帮助提高数据库的并发性能?
京东面试:MySQL MVCC是如何实现的?如何通过MVCC实现读已提交、可重复读隔离级别的?
|
8天前
|
数据管理 关系型数据库 MySQL
数据管理服务DMS支持MySQL数据库的无锁结构变更
本文介绍了使用Sysbench准备2000万数据并进行全表字段更新的操作。通过DMS的无锁变更功能,可在不锁定表的情况下完成结构修改,避免了传统方法中可能产生的锁等待问题。具体步骤包括:准备数据、提交审批、执行变更及检查表结构,确保变更过程高效且不影响业务运行。
29 2
|
2月前
|
存储 SQL 关系型数据库
MySQL 面试题
MySQL 的一些基础面试题
|
3月前
|
存储 关系型数据库 MySQL
【MYSQL】 ——索引(B树B+树)、设计栈
索引的特点,使用场景,操作,底层结构,B树B+树,MYSQL设计栈
|
4月前
|
存储 缓存 算法
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
本文介绍了多线程环境下的几个关键概念,包括时间片、超线程、上下文切换及其影响因素,以及线程调度的两种方式——抢占式调度和协同式调度。文章还讨论了减少上下文切换次数以提高多线程程序效率的方法,如无锁并发编程、使用CAS算法等,并提出了合理的线程数量配置策略,以平衡CPU利用率和线程切换开销。
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!