水光互补优化调度】基于非支配排序遗传算法的多目标水光互补优化调度(Matlab代码实现)

简介: 水光互补优化调度】基于非支配排序遗传算法的多目标水光互补优化调度(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


1.1 水光互补


1.2 水光互补模型——目标函数和约束条件


1.3 多目标遗传算法


📚2 运行结果


🌈3 Matlab代码实现


🎉4 参考文献


💥1 概述

参考文献:


df030a680ee9449fa2129fbecc7bbaf6.png


然后本文换一个算法进行解决,也算一个创新点吧:


基于非支配排序遗传算法的多目标水光互补优化调度,然后用Matlab实现之。


近些年,人类对环境问题和资源枯竭关注日益增大,使得以光伏为代表的新能源发电得到了大规模的发展。截至2015年底,中国光伏发电累计装机容量4318万千瓦,成为全球光伏发电装机容量最大的国家[1]。但是,光伏具有“随机性、间歇性和波动性”的特点[2-4]。光伏发电的并网对电力系统的规划、安全、调度和控制等方面的影响也越来越大。虽然光伏的装机容量很大,但是并网消纳仍是一个有待解决的问题[5-6]。水电是一种清洁可再生的能源,其出力具有快速调节的优良性能,在电力系统中常常担任调峰的任务[7]。利用水电出力的特点来平衡光伏出力的波动,可以为电网提供更多的优质电能。世界上第一座水光互补电站2009年在青海玉树建成[8],到2015年全球最大的龙羊峡水光互补电站的建成[9],水光互补已得到了全世界的广泛关注。


1.1 水光互补

水光互补是指水电和光伏联合运行,利用水电机组快速调节的优良特性以及水电站的库容调节光伏出力的“随机性、波动性和间歇性”,同时光伏可以在水电匮乏时给予联合系统电量上的支持。


水电和光伏在年际、年内、日内有很好的互补特性。


.年际、年内互补特性


水电的发电量取决于径流的多少,径流在年内和年际间相差悬殊,年际有丰水年和枯水年之分,年内有丰、枯水期。水电在丰水年发电多、枯水年发电少,冬春季发电量少、夏秋季发电量多。相对而言,太阳能年际间波动很小,光电的年发电量几乎是恒定值;光伏发电还具有冬春季发电量大、夏秋季发电量小的季节性特点。光伏在水电匮乏时可以为联合系统提供电量上的支撑,减少系统负荷的缺额,因此,水电和光伏发电在年际和年内都存在很好地互补关系。


日内互补特性


光伏发电取决于环境条件,光伏出力呈现“间歇性、随机性和波动性”地特点。在一天之内,水电可以利用机组的快速调节性能来平抑光伏出力的“随机性和波动性”;光伏只在白天出力,在夜间的出力几乎为零,水电可以平衡光伏出力的“间歇性”[10]。因此,水电和光伏发电在日内也存在着很好的互补关系,如图1所示。


        a8bbfe778a6b40de96d2cba0223f94c4.png      


1.2 水光互补模型——目标函数和约束条件

水光互补的运行模式为以水电和光伏联合运行,以光伏出力为基荷,用水电来调节光伏出力,为了保证下游的用水,水电站在调度期内的出库流量恒定。在此模式下,建立水光互补调峰能力的模型,并考虑了各种约束条件。


目标函数


0f3cfdfe5b63492181b79f5088598091.png


两个目标,所有本文考虑用多目标优化算法解决之,没有用参考文献的方法。


水电出力的约束


9a64a15e26b043968db2463410c64d4b.png


ac102722c4ba411d9142227e5f90bba5.png



功率平衡约束


1a5a1e9362c74d888d273d17a5218d9b.png


其他约束


89a72675fd1a439ab35424000c52f7e9.png


1.3 多目标遗传算法

多目标优化NSGA-II(非支配排序常见于遗传算法)


📚2 运行结果


74b3fde84ee240a3a63c6754cb9c690b.png

4fd31b6fe7fe4c1d8c5200eceb1b8e9a.png


🌈3 Matlab代码实现

部分代码:

%% NSGA-II Parameters
MaxIt=70;      % Maximum Number of Iterations
nPop=80;        % Population Size
pCrossover=0.7;                         % Crossover Percentage
nCrossover=2*round(pCrossover*nPop/2);  % Number of Parnets (Offsprings)
pMutation=0.4;                          % Mutation Percentage
nMutation=round(pMutation*nPop);        % Number of Mutants
mu=0.02;                    % Mutation Rate
sigma=0.1*(VarMax-VarMin);  % Mutation Step Size
%% Initialization
empty_individual.Position=[];
empty_individual.Cost=[];
empty_individual.Rank=[];
empty_individual.DominationSet=[];
empty_individual.DominatedCount=[];
empty_individual.CrowdingDistance=[];
pop=repmat(empty_individual,nPop,1);
disp('产生初始可行解...')
for i=1:nPop   
    flag=0;
    while flag==0
        tmp=[];
        for j=1:1:nVar
            tmp = [tmp unifrnd(VarMin(j),VarMax(j),1)];
        end
        flag = test(tmp);     % 检查约束 约束不满足就重新生成解
    end
    pop(i).Position=tmp;
    pop(i).Cost=CostFunction(pop(i).Position);
end
% pause
% Non-Dominated Sorting
[pop, F]=NonDominatedSorting(pop);
% Calculate Crowding Distance
pop=CalcCrowdingDistance(pop,F);
% Sort Population
[pop, F]=SortPopulation(pop);
%% NSGA-II Main Loop
for it=1:MaxIt
    % 交叉
    popc=repmat(empty_individual,nCrossover/2,2);
    for k=1:nCrossover/2
        i1=randi([1 nPop]);
        p1=pop(i1);
        i2=randi([1 nPop]);
        p2=pop(i2);
        [popc(k,1).Position, popc(k,2).Position]=Crossover(p1.Position,p2.Position,VarMin,VarMax);
        if test(popc(k,1).Position)+test(popc(k,2).Position)==2
            popc(k,1).Cost=CostFunction(popc(k,1).Position);
            popc(k,2).Cost=CostFunction(popc(k,2).Position);
        else
            popc(k,1)=p1;
            popc(k,2)=p2;
        end


🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]丁航,安源,王颂凯,王浩. 水光互补的短期优化调度[C]//.2016第二届能源,环境与地球科学国际会议论文集.[出版者不详],2016:21-26.

相关文章
|
16天前
|
算法
基于遗传优化算法的风力机位置布局matlab仿真
本项目基于遗传优化算法(GA)进行风力机位置布局的MATLAB仿真,旨在最大化风场发电效率。使用MATLAB2022A版本运行,核心代码通过迭代选择、交叉、变异等操作优化风力机布局。输出包括优化收敛曲线和最佳布局图。遗传算法模拟生物进化机制,通过初始化、选择、交叉、变异和精英保留等步骤,在复杂约束条件下找到最优布局方案,提升风场整体能源产出效率。
|
3天前
|
算法 数据挖掘 数据安全/隐私保护
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
|
8天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。
|
7天前
|
算法 数据安全/隐私保护 索引
基于GWO灰狼优化的多目标优化算法matlab仿真
本程序基于灰狼优化(GWO)算法实现多目标优化,适用于2个目标函数的MATLAB仿真。使用MATLAB2022A版本运行,迭代1000次后无水印输出结果。GWO通过模拟灰狼的社会层级和狩猎行为,有效搜索解空间,找到帕累托最优解集。核心步骤包括初始化狼群、更新领导者位置及适应值计算,确保高效探索多目标优化问题。该方法适用于工程、经济等领域复杂决策问题。
|
17天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
3月前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
2月前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
83 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
2天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。

热门文章

最新文章