【机会约束、鲁棒优化】具有排放感知型经济调度中机会约束和鲁棒优化研究【IEEE6节点、IEEE118节点算例】(Matlab代码实现)1

简介: 【机会约束、鲁棒优化】具有排放感知型经济调度中机会约束和鲁棒优化研究【IEEE6节点、IEEE118节点算例】(Matlab代码实现)1

💥 💥 💞 💞 欢迎来到本博客 ❤️ ❤️ 💥 💥



🏆 博主优势: 🌞 🌞 🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。



⛳ 座右铭:行百里者,半于九十。


📋 📋 📋 本文目录如下: 🎁 🎁 🎁

目录

💥1 概述

📚2 运行结果

2.1 风能

2.2 IEEE6和IEEE118

2.3 IEEE6

2.4 IEEE118

🎉3 参考文献

🌈4 Matlab代码及数据实现


💥1 概述

机会约束规划(chance constrained programming简称CCP)也称为概率约束规划,最初由Charnes和 Cooper[1在1958年提出,是针对约束条件中含有随机参数并在一定概率条件满足下的最优化问题.近几十年,机会约束广泛应用于参数不确定的优化和决策问题中.比如,网络优化2]、供应链管理3、生产计划[4和水流箱管理5等.关于CCP的发展情形,感兴趣的读者可参见综述文献[6].机会约束规划的一般形式为:


85aa3f89cc8b11a533e360edb2a88197.png


常规机会约束假设已知随机变量概率分布Р的准确信息.然而,在许多实际应用中随机变量∈ 难以精确预测,仅能够获得其部分信息(如矩和样本信息等).满足这些概率信息的分布构从伏)方法结合.建立在分布不确定集合最环情优L好分布鲁棒优化问题优化思想和随机优化方法结合,建立在分布不确定


鲁棒优化(distributionally robust optimization,简称结合机会约束即为分布鲁棒机会约束优化问题(distributionally robust chance constrainedoptimization program,简称DRCC).


分布鲁棒机会约束优化的一般形式为:


fba193bb5eed7484f43b8bf2f088d0b2.png


调度者存在多元化的风险偏好,导致对“最恶劣场景”的评估产生差异。如图 3 所示,日前预测


总偏差由偏离时长和对应时刻的偏离度决定。也就是说,控制调度周期内不确定变量的总体偏离度,就能够度量调度者风险偏好。但是,在给定的总偏离度条件下,学界普遍认为“最恶劣场景”发生在不确定域边界,这在线性系统中必然成立,但是在非线性系统中,“最恶劣场景”可能发生在不确定域内。


597f036a6af1862aa4a9ec3b3b041df9.png


为此,本文通过有限离散化不确定域,生成梯次偏离的不确定域边界,扩充“恶劣场景集”。在此基础上,控制不确定变量的总体偏离值,表征调度者的保守程度。


考虑风电不确定性的电力系统调度模型中的部分输入量(Pw和Pg)具有不确定性,通过传统数学规划方法得到的优化调度方案可能无法实现系统的经济性最优,甚至可能违反系统的安全运行约束。针对传统的数学规划方法难以消除不确定参量对优化模型的负面影响,Soyster提出了鲁棒优化方法。RO在优化模型建立之初就对其中的不确定参量进行分析,明确不确定参量的波动区间。RO旨在得到这样一个优化方案:在不确定参量可能的取值范围内,优化模型的所有约束条件都能被满足,且使得优化模型目标函数能取得最恶劣情况下的最优值。因此,RO所得的优化结果对不确定参量的波动具有免疫能力,并且不失良好性能。


对包含不确定参量的优化问题而言,RO提出了一种“劣甲选优的处理刀八,关注点在于最恶劣情况下模型的最优解,仅需知道不确定参量波动的边界信息即可进行决策,计算效率高,需要了解的不确定参量信息少,优化方案的抗干扰能力强,因此具有很高的实用价值。RO的提出和发展弥补了传统优化方法的不足,己成为处理含有不确定参量优化问题的重要工具。


传统的数学优化模型一般形式如下:


f6620236128f8be46e12f69546cabb4c.png


f96d483c325eb1f1a2b6f9a684752e28.png


0c0a1fa7d3c23f1279851f1d8fb183b9.png


📚2 运行结果

2.1 风能


c1a0562bc3422e6cfb290b7ce56e8eee.png


2cbd5cb01113046d888d10bc7f117d4c.png


edd05277b0dff4801b066cc7b5ed0322.png


617ad336a8aa442db7985a88d6f9eb30.png


953ac69495035abc31f34e7e370a5351.png

d36e4e6ce69ba17b64e443792199434a.png


e2f17002cfe07feb449009f982abb0ec.png


916d0b6874f27d938c03bff5381e8cae.png


部分代码:

figure
yyaxis left
bar(x,y,'FaceColor','[0.3010 0.7450 0.9330]','EdgeColor','[0 0.4470 0.7410]');box off
xlim([mu-3*sigma,mu+3*sigma])
xlabel('Error','FontSize',13.2,'FontName','Times New Roman','FontWeight','Bold')
ylabel('Number of samples','FontSize',13.2,'FontName','Times New Roman','FontWeight','Bold')
% a2=axes;
yyaxis right
fp=fplot(@(x)normpdf(x,mu,sigma),[mu-3*sigma,mu+3*sigma]);
xlim([mu-3*sigma,mu+3*sigma])
fp.LineStyle = '-.';
fp.LineWidth =2;
fp.Color =[0.9290 0.6940 0.1250];
%set(a2,'box','off','yaxislocation','right','color','none')
% set(gca,'xticklabel',[]);
ylabel('Probability density','FontSize',13.2,'FontName','Times New Roman','FontWeight','Bold')
set(gcf,'Position',[100 100 400 500]);
set(gca,'FontSize',12,'FontName','Times New Roman')
ax = gca;
ax.YAxis(1).Exponent = 4;
相关文章
|
2月前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
164 73
|
13天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
1月前
|
安全 调度
电力系统的负荷损失和潮流计算matlab仿真,对比最高度数,最高介数以及最高关键度等节点攻击
本课题研究节点攻击对电力系统稳定性的影响,通过模拟最高度数、最高介数和最高关键度攻击,对比不同攻击方式下的停电规模。采用MATLAB 2022a 进行系统仿真,核心程序实现线路断开、潮流计算及优化。研究表明,节点攻击会导致负荷损失和系统瘫痪,对电力系统的安全构成严重威胁。通过分析负荷损失率和潮流计算,提出减少负荷损失的方法,以提升电力系统的稳定性和安全性。
|
1月前
|
算法 调度
基于CVX凸优化的电动汽车充放电调度matlab仿真
本程序基于CVX凸优化实现电动汽车充放电调度,通过全局和局部优化求解,展示了不同情况下的负载曲线。程序在MATLAB 2022a上运行,有效平抑电网负荷峰值,提高电网稳定性。
|
1月前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
200 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
129 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
90 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章