多目标优化算法】多目标蚱蜢优化算法(Matlab代码实现)

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
简介: 多目标优化算法】多目标蚱蜢优化算法(Matlab代码实现)

💥 💥 💞 💞 欢迎来到本博客 ❤️ ❤️ 💥 💥



🏆 博主优势: 🌞 🌞 🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。



⛳ 座右铭:行百里者,半于九十。


📋 📋 📋 本文目录如下: 🎁 🎁 🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码及详细文章讲解


💥1 概述

4622c9678d27b29f6e8b3667291ac36a.gif

摘要本文从自然界中草蜢群的导航出发,提出了一种新的多目标算法。首先采用数学模型来模拟游泳过程中个体之间的相互作用,包括吸引力、排斥力和舒适区。然后提出了一种机制来使用该模型在单目标搜索空间中逼近全局最优。然后,将存档和目标选择技术集成到算法中,以估计多目标问题的帕累托最优前沿。为了测试所提出算法的性能,使用了一组不同的标准多目标测试问题。该结果与进化多目标优化文献中最受欢迎和最新的算法进行了比较,使用三个性能指标进行了定量和定性分析。结果表明,在获得的帕累托最优解及其分布的准确性方面,所提出的算法能够提供非常有竞争力的结果。


在这个星球上人类存在之前,大自然一直在不断地利用进化来解决具有挑战性的问题。因此,从自然中获得灵感来解决不同的挑战性问题是合理的。在优化领域,1977年,霍兰德提出了一个革命性的想法,在计算机中模拟自然界的进化概念,以解决优化问题[1]就在那一刻,最著名的启发式算法——遗传算法(GA)[2]应运而生,并为解决不同研究领域中的挑战性和复杂问题开辟了一条新途径。


GA算法的一般思想非常简单。它模拟了自然界中基因的选择、重组和突变。事实上,达尔文的进化论是这个算法的主要灵感来源。在遗传算法中,优化过程首先创建一组随机解作为给定优化问题的候选解(个体)。


问题的每个变量都被认为是一个基因,而这组变量类似于染色体。与自然相似,成本函数定义了每条染色体的适合度。整套解决方案被视为一个总体。当计算染色体的适合度时,将随机选择最佳染色体以创建下一个群体。在遗传算法中,选择概率较高的最适者,以类似于自然界的方式参与创造下一个种群。


详细文章讲解见第4部分。


📚2 运行结果


980750f1b5d961edffcb09bca15293e9.png


02560ff88b116038715c4404e87ef369.png


部分代码:

clc;
clear;
close all;
% Change these details with respect to your problem%%%%%%%%%%%%%%
ObjectiveFunction=@ZDT1;
dim=5;
lb=0;
ub=1;
obj_no=2;
if size(ub,2)==1
ub=ones(1,dim)*ub;
lb=ones(1,dim)*lb;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
flag=0;
if (rem(dim,2)~=0)
dim = dim+1;
ub = [ub, 1];
lb = [lb, 0];
flag=1;
end
max_iter=100;
N=200;
ArchiveMaxSize=100;
Archive_X=zeros(100,dim);
Archive_F=ones(100,obj_no)*inf;
Archive_member_no=0;
%Initialize the positions of artificial whales
GrassHopperPositions=initialization(N,dim,ub,lb);
TargetPosition=zeros(dim,1);
TargetFitness=inf*ones(1,obj_no);
cMax=1;
cMin=0.00004;
%calculate the fitness of initial grasshoppers
for iter=1:max_iter
for i=1:N
Flag4ub=GrassHopperPositions(:,i)>ub';
Flag4lb=GrassHopperPositions(:,i)<lb';
GrassHopperPositions(:,i)=(GrassHopperPositions(:,i).*(~(Flag4ub+Flag4lb)))+ub'.*Flag4ub+lb'.*Flag4lb;
GrassHopperFitness(i,:)=ObjectiveFunction(GrassHopperPositions(:,i)');
if dominates(GrassHopperFitness(i,:),TargetFitness)
TargetFitness=GrassHopperFitness(i,:);
TargetPosition=GrassHopperPositions(:,i);
end
end
[Archive_X, Archive_F, Archive_member_no]=UpdateArchive(Archive_X, Archive_F, GrassHopperPositions, GrassHopperFitness, Archive_member_no);
if Archive_member_no>ArchiveMaxSize
Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
[Archive_X, Archive_F, Archive_mem_ranks, Archive_member_no]=HandleFullArchive(Archive_X, Archive_F, Archive_member_no, Archive_mem_ranks, ArchiveMaxSize);
else
Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
end
Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
index=RouletteWheelSelection(1./Archive_mem_ranks);
if index==-1
index=1;
end
TargetFitness=Archive_F(index,:);
TargetPosition=Archive_X(index,:)';
c=cMax-iter*((cMax-cMin)/max_iter); % Eq. (3.8) in the paper
for i=1:N
temp= GrassHopperPositions;
for k=1:2:dim
S_i=zeros(2,1);
for j=1:N
if i~=j
Dist=distance(temp(k:k+1,j), temp(k:k+1,i));
r_ij_vec=(temp(k:k+1,j)-temp(k:k+1,i))/(Dist+eps);
xj_xi=2+rem(Dist,2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Eq. (3.2) in the paper
s_ij=((ub(k:k+1)' - lb(k:k+1)') .*c/2)*S_func(xj_xi).*r_ij_vec;
S_i=S_i+s_ij;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
end
S_i_total(k:k+1, :) = S_i;
end
X_new=c*S_i_total'+(TargetPosition)'; % Eq. (3.7) in the paper
GrassHopperPositions_temp(i,:)=X_new';
end
% GrassHopperPositions
GrassHopperPositions=GrassHopperPositions_temp';
disp(['At the iteration ', num2str(iter), ' there are ', num2str(Archive_member_no), ' non-dominated solutions in the archive']);
end
if (flag==1)
TargetPosition = TargetPosition(1:dim-1);
end
figure
Draw_ZDT1();
hold on
plot(Archive_F(:,1),Archive_F(:,2),'ro','MarkerSize',8,'markerfacecolor','k');
legend('True PF','Obtained PF');
title('MOGOA');
set(gcf, 'pos', [403 466 230 200])


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


🌈4 Matlab代码及详细文章讲解

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
1天前
|
算法
基于遗传优化算法的风力机位置布局matlab仿真
本项目基于遗传优化算法(GA)进行风力机位置布局的MATLAB仿真,旨在最大化风场发电效率。使用MATLAB2022A版本运行,核心代码通过迭代选择、交叉、变异等操作优化风力机布局。输出包括优化收敛曲线和最佳布局图。遗传算法模拟生物进化机制,通过初始化、选择、交叉、变异和精英保留等步骤,在复杂约束条件下找到最优布局方案,提升风场整体能源产出效率。
|
1天前
|
算法 安全 机器人
基于包围盒的机械臂防碰撞算法matlab仿真
基于包围盒的机械臂防碰撞算法通过构建包围盒来近似表示机械臂及其环境中各实体的空间占用,检测包围盒是否相交以预判并规避潜在碰撞风险。该算法适用于复杂结构对象,通过细分目标对象并逐级检测,确保操作安全。系统采用MATLAB2022a开发,仿真结果显示其有效性。此技术广泛应用于机器人运动规划与控制领域,确保机器人在复杂环境中的安全作业。
|
1天前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
|
2天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
4天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
32 15
|
3天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
139 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度

热门文章

最新文章