多源动态最优潮流的分布鲁棒优化方法(IEEE118节点)(Matlab代码实现)

简介: 多源动态最优潮流的分布鲁棒优化方法(IEEE118节点)(Matlab代码实现)

💥 💥 💞 💞 欢迎来到本博客 ❤️ ❤️ 💥 💥



🏆 博主优势: 🌞 🌞 🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。



⛳ 座右铭:行百里者,半于九十。


📋 📋 📋 本文目录如下: 🎁 🎁 🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章讲解


💥1 概述

文献来源:


aadc9403e50aad877f2f92f7b3bb6d76.png


摘要:针对大规模清洁能源接入电网引起的系统鲁棒性和经济性协调问题,提出含风–光–水–火多种能源的分布鲁棒动态最优潮流模型。采用分布鲁棒优化方法将风光不确定性描述为包含概率分布信息的模糊不确定集。将模糊不确定集构造为一个以风光预测误差经验分布为中心,以Wasserstein距离为半径的Wasserstein球。在满足风光预测误差服从模糊不确定集中极端概率分布情况下最小化运行费用。由于梯级水电厂模型为混合整数模型,为了提高计算效率,将交流潮流近似为解耦线性潮流。最后,某703节点实际电力系统的仿真结果表明,所提方法可以通过控制样本大小和Wasserstein半径置信度的方法有效平衡系统的鲁棒性与经济性。

关键词:

鲁棒优化;最优潮流;数据驱动;多源电力系统;不确定性;

随着可再生能源发电和市场自由化的深入发展,电力系统运行点变得越来越不确定[1]。目前系

统负荷已经可以被精确预测,但风电和光伏发电预测则远远达不到保障电网安全运行的要求。火电机组生产成本高,且急剧升降时需要付出附加燃料消耗的代价。而水电由于其成本低廉,调节迅速等特点通常用于快速响应风电和光伏的变化。在日前调度中考虑多种能源之间的互补特性有助于减少风光不确定性的影响和提高系统运行的可靠性。因此,研究风–光–水–火多种能源的协同优化,并发展有效的不确定性优化方法及求解技术是当前研究人员亟需解决的关键问题。 如何处理风光的不确定性是多源协同优化问题的重要难点之 一 ,随机优化 (stochastic optimization,SO)是一种有效的方法。其假设风光出力误差服从某一确定的概率分布,并以最小化发电费用期望等为目标函数从而建立满足一定概率水平约束的随机优化模型。目前该方法已被用于经济调度、机组组合[2-4]、最优备用容量[5-6]等问题中。研究表明,根据随机规划求得的策略在不确定条件下能够使目标的期望达到一定的效果。但是,随机优化建模需要知完整的不确定参数概率分布信息。对于风光预测误差,在实际当中很难获取。


文章讲解见第4部分。


📚2 运行结果

IEEE118节点图:


0a71072af467c23580b49b9f8fa14ca5.jpg


原文图:


05b20dad57ee09d30c5f11ab92346b92.png


代码运行图:


0b8a262fc7b9cefffb4ceed40bc6f95e.png


原文图:


48d2bb3777189573e60d0652fdf7befb.png


复现图:


12a55b38aae394a3cbf0e6957ca208d4.png


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]竺如洁,韦化,白晓清.多源动态最优潮流的分布鲁棒优化方法[J].中国电机工程学报,2020,40(11):3489-3498.DOI:10.13334/j.0258-8013.pcsee.190665.


🌈4 Matlab代码、数据、文章讲解


相关文章
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
225 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
算法 Perl
【光波电子学】基于MATLAB的多模光纤模场分布的仿真分析
本文介绍了基于MATLAB的多模光纤模场分布仿真分析,详细阐述了多模光纤的概念、实现方法、仿真技术,并利用模式耦合方程分析方法,通过理论和仿真模型设计,展示了不同模式下的光场分布及其受光纤参数影响的分析结果。
174 4
【光波电子学】基于MATLAB的多模光纤模场分布的仿真分析
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
141 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
存储 算法 Serverless
【matlab】matlab基于DTW和HMM方法数字语音识别系统(源码+音频文件+GUI界面)【独一无二】
【matlab】matlab基于DTW和HMM方法数字语音识别系统(源码+音频文件+GUI界面)【独一无二】
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
111 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
4月前
|
机器学习/深度学习
基于IEEE30电网系统的停电规模评价系统matlab仿真,对比IEEE118,输出停电规模,潮流分布和负载率等
本课题针对IEEE标准节点系统,通过移除特定线路模拟故障,计算其余线路的有功潮流分布系数及负载率变化。采用MATLAB2022a进行仿真,通过潮流计算确定电网运行状态,并以负载率评估负载能力。IEEE30与IEEE118系统对比显示,前者在故障下易过载,后者则因更好的拓扑结构拥有更高的负载裕度。
|
4月前
|
算法 数据安全/隐私保护
基于星座图整形方法的QAM调制解调系统MATLAB误码率仿真,对比16,32,64,256四种QAM调制方式
本MATLAB 2022a仿真展示了不同QAM阶数下的星座图及误码率性能,通过星座图整形技术优化了系统性能。该技术利用非均匀分布的星座点提高功率效率,并通过合理布局增强抗干扰能力。随着QAM阶数增加,数据传输速率提升,但对信道质量要求也更高。核心程序实现了从比特生成到QAM映射、功率归一化、加噪及解调的全过程,并评估了系统误码率。
89 0
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章