【matlab】LSTM/GRU网络回归/分类预测改进与优化合集(持续更新)

简介: 【matlab】LSTM/GRU网络回归/分类预测改进与优化合集(持续更新)

MATLAB】LSTM/GRU网络回归/分类预测问题改进与优化合集(结合2021年新进化算法)#持续更新


目录


一、进化算法-LSTM


概述:

1.原理:通过进化算法寻找LSTM网络最优超参数。

2.本文测试数据为12输入单输出,解决回归问题。

3.评价指标:测试集实际值与预测值对比,目标函数为rmse,另外附MAE、MAPE、R2计算值

4.优化LSTM三个参数,即隐含层神经元数,学习率,训练次数

5.本代码进化算法为测试参数,为了提高运算速度,迭代次数为3,种群数量为5,可自行修改


1.金枪鱼算法TSO-LSTM


%TSO_LSTM
clear all;
close all;
clc;
Particles_no = 10; % 种群数量 50
Function_name=‘LSTM_MIN’;
Max_iter = 3; % 迭代次数 10
Low = [10 0.001 10 ];%三个参数的下限
Up = [200 0.02 200 ];%三个参数的上限
Dim = 3;%待优化参数数量
fobj = @(x)LSTM_MIN(x);
train_x=input(:,1:n);
train_y=output(:,1:n);
test_x=input(:,n+1:end);
test_y=output(:,n+1:end);
method=@mapminmax;
% method=@mapstd;
[train_x,train_ps]=method(train_x);
test_x=method(‘apply’,test_x,train_ps);
[train_y,output_ps]=method(train_y);
test_y=method(‘apply’,test_y,output_ps);
XTrain = double(train_x) ;
XTest = double(test_x) ;
YTrain = double(train_y);
YTest = double(test_y);
numFeatures = size(XTrain,1); %输入特征维数
numResponses = size(YTrain,1);%输出特征维数
layers = [ …
sequenceInputLayer(numFeatures)%输入层,参数是输入特征维数
lstmLayer(Tuna1(1,1))%lstm层,如果想要构建多层lstm,改几个参数就行了
fullyConnectedLayer(numResponses)%全连接层,也就是输出的维数
regressionLayer];%该参数说明是在进行回归问题,而不是分类问题
options = trainingOptions(‘adam’, …%求解器设置为’adam’
‘MaxEpochs’,Tuna1(1,3), …%这个参数是最大迭代次数,即进行200次训练,每次训练后更新神经网络参数
‘MiniBatchSize’,16, …%用于每次训练迭代的最小批次的大小。
‘InitialLearnRate’,Tuna1(1,2), …%学习率
‘GradientThreshold’,1, …%设置梯度阀值为1 ,防止梯度爆炸
‘Verbose’,false, …%如果将其设置为true,则有关训练进度的信息将被打印到命令窗口中。
‘Plots’,‘training-progress’);%构建曲线图
%对每个时间步进行预测,对于每次预测,使用前一时间步的观测值预测下一个时间步。
net = trainNetwork(XTrain,YTrain,layers,options);
numTimeStepsTest = size(XTest,2);
for i = 1:numTimeStepsTest
[net,YPred(:,i)] = predictAndUpdateState(net,XTest(:,i),‘ExecutionEnvironment’,‘cpu’);
end
% 结果
% 反归一化
predict_value=method(‘reverse’,YPred,output_ps);
predict_value=double(predict_value);
true_value=method(‘reverse’,YTest,output_ps);
true_value=double(true_value);
for i=1
figure
plot(true_value(i,:),‘-‘,‘linewidth’,2)
hold on
plot(predict_value(i,:),’-s’,‘linewidth’,2)
legend(‘实际值’,‘预测值’)
grid on
title(‘TSO-LSTM预测结果’)
ylim([-500 500])
rmse=sqrt(mean((true_value(i,:)-predict_value(i,:)).^2));
disp([‘-----------’,num2str(i),‘------------’])
disp([‘均方根误差(RMSE):’,num2str(rmse)])
mae=mean(abs(true_value(i,:)-predict_value(i,:)));
disp([‘平均绝对误差(MAE):’,num2str(mae)])
mape=mean(abs((true_value(i,:)-predict_value(i,:))./true_value(i,:)));
disp([‘平均相对百分误差(MAPE):’,num2str(mape100),’%'])
r2=R2(true_value(i,:),predict_value(i,:));
disp([‘R-square决定系数(R2):’,num2str(r2)])
end


实际效果以自己的数据为准,本文测试结果并不代表算法最终效果。不同数据,数据处理方式,待优化参数等均不同。


2.孔雀优化算法(POA)-LSTM


与上文同数据、同进化算法设置参数。效果仅供参考


3.猎人优化算法(HPO)-LSTM


1.2021年Iraj Naruei等人提出的猎人优化算法,Hunter–prey optimization, 与LSTM网络结合,优化LSTM超参数。

2.该算法的灵感来自狮子、豹子和狼等捕食性动物以及雄鹿和瞪羚等猎物的行为。动物狩猎行为的场景有很多,其中一些已经转化为优化算法。本文使用的场景与之前算法的场景不同。在提议的方法中,猎物和捕食者种群以及捕食者攻击远离猎物种群的猎物。猎人向着这个远处的猎物调整自己的位置,而猎物则向着安全的地方调整自己的位置。作为适应度函数最佳值的搜索代理的位置被认为是安全的位置。在几个测试函数上实现的 HPO 算法以评估其性能。此外,对于性能验证,所提出的算法被应用于几个工程问题。结果表明,所提出的算法在解决测试功能和工程问题方面表现良好。

3.本文为测试数据,12输入,单输出,回归问题。与上文同数据、同进化算法设置参数。效果仅供参考


4.人工大猩猩部队优化算法(GTO)-LSTM


本文为测试数据,12输入,单输出,回归问题。与上文同数据、同进化算法设置参数。

效果仅供参考


二、进化算法(改进)-LSTM


1.混沌映射Tent


2.收敛因子


3.多算法组合


4.基于levy飞行


本文将Levy飞行应用于鲸鱼的位置更新中,在算法进行更新后再进行一次Levy飞行更新个体位置,可以实现跳出局部最优解,扩大搜索能力的效果。位置更新的方式为:

X(t+1)=X(t)+α⊕Levy(λ)

其中,α \alphaα为步长缩放因子,本文取值为1;

Levy飞行的具体机制:

“莱维Levy飞行”以法国数学家保罗·莱维命名,指的是步长的概率分布为重尾分布的随机行走,也就是说在随机行走的过程中有相对较高的概率出现大跨步。莱维飞行的名称来源于本华·曼德博(Benoît Mandelbrot,莱维的学生)。他用“柯西飞行”来指代步长分布是柯西分布的随机行走,用“瑞利飞行”指代步长分布是正态分布(尽管正态分布没有重尾)的随机行走(瑞利分布是二维独立同方差正态变量模长的分布)。后来学者还进一步将莱维飞行的概念从连续空间推广到分立格点上的随机运动。


三、LSTM-CNN(提取特征)


1.LSTM-CNN


2.QR(分位数回归)-LSTM-CNN


3.Attention-QR-LSTM-CNN


相关文章
|
5天前
|
机器学习/深度学习 算法
基于蛙跳优化的神经网络数据预测matlab仿真
使用MATLAB2022a,应用蛙跳优化算法(SFLA)调整神经网络权重,提升预测精度,输出预测曲线。神经网络结合输入、隐藏和输出层进行预测,蛙跳算法模仿蛙群觅食行为优化权重和阈值。算法流程包括蛙群初始化、子群划分、局部搜索及适应度更新,直至满足停止条件。优化后的神经网络能提升预测性能。
|
5天前
|
机器学习/深度学习 算法
m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真
摘要: 在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为"Ttttttt111222",优化后为"Tttttttt333444",明显改进体现为"Tttttttttt5555"。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用'adam'优化器和超参数调整,最终评估并保存预测结果。
15 0
|
6天前
|
机器学习/深度学习 监控 算法
基于yolov2深度学习网络的昆虫检测算法matlab仿真,并输出昆虫数量和大小判决
YOLOv2算法应用于昆虫检测,提供实时高效的方法识别和定位图像中的昆虫,提升检测精度。核心是统一检测网络,预测边界框和类别概率。通过预测框尺寸估算昆虫大小,适用于农业监控、生态研究等领域。在matlab2022A上运行,经过关键升级,如采用更优网络结构和损失函数,保证速度与精度。持续优化可增强对不同昆虫的检测能力。![image.png](https://ucc.alicdn.com/pic/developer-ecology/3tnl7rfrqv6tw_e760ff6682a3420cb4e24d1e48b10a2e.png)
|
8天前
|
机器学习/深度学习 算法
基于GA遗传优化的CNN-GRU的时间序列回归预测matlab仿真
摘要: 使用MATLAB2022a,展示了一种基于遗传算法优化的CNN-GRU时间序列预测模型,融合遗传算法与深度学习,提升预测精度。遗传算法负责优化模型超参数,如学习率和神经元数量,以最小化均方误差。CNN负责特征提取,GRU处理序列数据中的长期依赖。流程包括初始化、评估、选择、交叉、变异和迭代,旨在找到最佳超参数组合。
|
8天前
|
算法
m基于PSO粒子群优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了Offset Min-Sum (OMS)译码算法与粒子群优化(PSO)结合,以优化偏移参数,提升LDPC码解码性能。PSO通过迭代寻找最小化误码率(BER)的最佳偏移量。核心程序运用PSO进行参数更新和适应度函数(BER)评估,最终在不同信噪比下展示OMS解码性能,并保存结果。
14 0
|
9天前
|
传感器 算法 安全
基于WSN网络的定向步幻影路由算法matlab仿真
该文探讨了无线传感器网络中的位置隐私保护,对比了NDRW路由与定向步幻影路由在安全时间和能耗方面的性能。在MATLAB2022a中进行测试,结果显示NDRW路由提供最长的安全时间,尤其在长距离传输时,且在近距离下能耗低于幻影路由。幻影路由虽消耗更多能量,但通过随机步创造幻影源以增强安全性。NDRW路由利用非确定性随机游走策略,避免拥堵并提高效率,而幻影路由则引入方向性控制,通过启发式算法优化路径选择。
|
10天前
|
机器学习/深度学习 算法 数据可视化
基于GA遗传优化的CNN-LSTM的时间序列回归预测matlab仿真
摘要:该内容展示了基于遗传算法优化的CNN-LSTM时间序列预测模型在matlab2022a中的应用。核心程序包括遗传算法优化过程、网络训练、误差分析及预测结果的可视化。模型通过GA调整CNN-LSTM的超参数,提升预测准确性和稳定性。算法流程涉及初始化、评估、选择、交叉和变异等步骤,旨在找到最佳超参数以优化模型性能。
|
29天前
|
消息中间件 Java Linux
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
|
11天前
|
网络协议 算法 Linux
【嵌入式软件工程师面经】Linux网络编程Socket
【嵌入式软件工程师面经】Linux网络编程Socket
28 1
|
12天前
|
负载均衡 Ubuntu Linux
Linux命令探秘:bond2team与网络绑定技术
Linux的`bond2team`是网络绑定和团队技术工具,用于组合多个网络接口以提升带宽、容错性和负载均衡。通过安装`ifenslave-2.6`,在`/etc/sysconfig/network-scripts/`或`/etc/network/interfaces`配置文件中设定接口绑定模式,如`activebackup`。它支持负载均衡、容错和热备等多种工作模式,确保网络高可用性和性能。在配置前务必备份,并重启服务使配置生效。

热门文章

最新文章