【matlab】LSTM/GRU网络回归/分类预测改进与优化合集(持续更新)

简介: 【matlab】LSTM/GRU网络回归/分类预测改进与优化合集(持续更新)

MATLAB】LSTM/GRU网络回归/分类预测问题改进与优化合集(结合2021年新进化算法)#持续更新


目录


一、进化算法-LSTM


概述:

1.原理:通过进化算法寻找LSTM网络最优超参数。

2.本文测试数据为12输入单输出,解决回归问题。

3.评价指标:测试集实际值与预测值对比,目标函数为rmse,另外附MAE、MAPE、R2计算值

4.优化LSTM三个参数,即隐含层神经元数,学习率,训练次数

5.本代码进化算法为测试参数,为了提高运算速度,迭代次数为3,种群数量为5,可自行修改


1.金枪鱼算法TSO-LSTM


%TSO_LSTM
clear all;
close all;
clc;
Particles_no = 10; % 种群数量 50
Function_name=‘LSTM_MIN’;
Max_iter = 3; % 迭代次数 10
Low = [10 0.001 10 ];%三个参数的下限
Up = [200 0.02 200 ];%三个参数的上限
Dim = 3;%待优化参数数量
fobj = @(x)LSTM_MIN(x);
train_x=input(:,1:n);
train_y=output(:,1:n);
test_x=input(:,n+1:end);
test_y=output(:,n+1:end);
method=@mapminmax;
% method=@mapstd;
[train_x,train_ps]=method(train_x);
test_x=method(‘apply’,test_x,train_ps);
[train_y,output_ps]=method(train_y);
test_y=method(‘apply’,test_y,output_ps);
XTrain = double(train_x) ;
XTest = double(test_x) ;
YTrain = double(train_y);
YTest = double(test_y);
numFeatures = size(XTrain,1); %输入特征维数
numResponses = size(YTrain,1);%输出特征维数
layers = [ …
sequenceInputLayer(numFeatures)%输入层,参数是输入特征维数
lstmLayer(Tuna1(1,1))%lstm层,如果想要构建多层lstm,改几个参数就行了
fullyConnectedLayer(numResponses)%全连接层,也就是输出的维数
regressionLayer];%该参数说明是在进行回归问题,而不是分类问题
options = trainingOptions(‘adam’, …%求解器设置为’adam’
‘MaxEpochs’,Tuna1(1,3), …%这个参数是最大迭代次数,即进行200次训练,每次训练后更新神经网络参数
‘MiniBatchSize’,16, …%用于每次训练迭代的最小批次的大小。
‘InitialLearnRate’,Tuna1(1,2), …%学习率
‘GradientThreshold’,1, …%设置梯度阀值为1 ,防止梯度爆炸
‘Verbose’,false, …%如果将其设置为true,则有关训练进度的信息将被打印到命令窗口中。
‘Plots’,‘training-progress’);%构建曲线图
%对每个时间步进行预测,对于每次预测,使用前一时间步的观测值预测下一个时间步。
net = trainNetwork(XTrain,YTrain,layers,options);
numTimeStepsTest = size(XTest,2);
for i = 1:numTimeStepsTest
[net,YPred(:,i)] = predictAndUpdateState(net,XTest(:,i),‘ExecutionEnvironment’,‘cpu’);
end
% 结果
% 反归一化
predict_value=method(‘reverse’,YPred,output_ps);
predict_value=double(predict_value);
true_value=method(‘reverse’,YTest,output_ps);
true_value=double(true_value);
for i=1
figure
plot(true_value(i,:),‘-‘,‘linewidth’,2)
hold on
plot(predict_value(i,:),’-s’,‘linewidth’,2)
legend(‘实际值’,‘预测值’)
grid on
title(‘TSO-LSTM预测结果’)
ylim([-500 500])
rmse=sqrt(mean((true_value(i,:)-predict_value(i,:)).^2));
disp([‘-----------’,num2str(i),‘------------’])
disp([‘均方根误差(RMSE):’,num2str(rmse)])
mae=mean(abs(true_value(i,:)-predict_value(i,:)));
disp([‘平均绝对误差(MAE):’,num2str(mae)])
mape=mean(abs((true_value(i,:)-predict_value(i,:))./true_value(i,:)));
disp([‘平均相对百分误差(MAPE):’,num2str(mape100),’%'])
r2=R2(true_value(i,:),predict_value(i,:));
disp([‘R-square决定系数(R2):’,num2str(r2)])
end


实际效果以自己的数据为准,本文测试结果并不代表算法最终效果。不同数据,数据处理方式,待优化参数等均不同。


2.孔雀优化算法(POA)-LSTM


与上文同数据、同进化算法设置参数。效果仅供参考


3.猎人优化算法(HPO)-LSTM


1.2021年Iraj Naruei等人提出的猎人优化算法,Hunter–prey optimization, 与LSTM网络结合,优化LSTM超参数。

2.该算法的灵感来自狮子、豹子和狼等捕食性动物以及雄鹿和瞪羚等猎物的行为。动物狩猎行为的场景有很多,其中一些已经转化为优化算法。本文使用的场景与之前算法的场景不同。在提议的方法中,猎物和捕食者种群以及捕食者攻击远离猎物种群的猎物。猎人向着这个远处的猎物调整自己的位置,而猎物则向着安全的地方调整自己的位置。作为适应度函数最佳值的搜索代理的位置被认为是安全的位置。在几个测试函数上实现的 HPO 算法以评估其性能。此外,对于性能验证,所提出的算法被应用于几个工程问题。结果表明,所提出的算法在解决测试功能和工程问题方面表现良好。

3.本文为测试数据,12输入,单输出,回归问题。与上文同数据、同进化算法设置参数。效果仅供参考


4.人工大猩猩部队优化算法(GTO)-LSTM


本文为测试数据,12输入,单输出,回归问题。与上文同数据、同进化算法设置参数。

效果仅供参考


二、进化算法(改进)-LSTM


1.混沌映射Tent


2.收敛因子


3.多算法组合


4.基于levy飞行


本文将Levy飞行应用于鲸鱼的位置更新中,在算法进行更新后再进行一次Levy飞行更新个体位置,可以实现跳出局部最优解,扩大搜索能力的效果。位置更新的方式为:

X(t+1)=X(t)+α⊕Levy(λ)

其中,α \alphaα为步长缩放因子,本文取值为1;

Levy飞行的具体机制:

“莱维Levy飞行”以法国数学家保罗·莱维命名,指的是步长的概率分布为重尾分布的随机行走,也就是说在随机行走的过程中有相对较高的概率出现大跨步。莱维飞行的名称来源于本华·曼德博(Benoît Mandelbrot,莱维的学生)。他用“柯西飞行”来指代步长分布是柯西分布的随机行走,用“瑞利飞行”指代步长分布是正态分布(尽管正态分布没有重尾)的随机行走(瑞利分布是二维独立同方差正态变量模长的分布)。后来学者还进一步将莱维飞行的概念从连续空间推广到分立格点上的随机运动。


三、LSTM-CNN(提取特征)


1.LSTM-CNN


2.QR(分位数回归)-LSTM-CNN


3.Attention-QR-LSTM-CNN


相关文章
|
19天前
|
网络协议
计算机网络的分类
【10月更文挑战第11天】 计算机网络可按覆盖范围(局域网、城域网、广域网)、传输技术(有线、无线)、拓扑结构(星型、总线型、环型、网状型)、使用者(公用、专用)、交换方式(电路交换、分组交换)和服务类型(面向连接、无连接)等多种方式进行分类,每种分类方式揭示了网络的不同特性和应用场景。
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
16天前
|
机器学习/深度学习 Serverless 索引
分类网络中one-hot的作用
在分类任务中,使用神经网络时,通常需要将类别标签转换为一种合适的输入格式。这时候,one-hot编码(one-hot encoding)是一种常见且有效的方法。one-hot编码将类别标签表示为向量形式,其中只有一个元素为1,其他元素为0。
26 3
|
20天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
21天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
18天前
|
存储 分布式计算 负载均衡
|
18天前
|
安全 区块链 数据库
|
1天前
|
存储 安全 算法
网络安全与信息安全:漏洞、加密技术及安全意识的重要性
如今的网络环境中,网络安全威胁日益严峻,面对此类问题,除了提升相关硬件的安全性、树立法律法规及行业准则,增强网民的网络安全意识的重要性也逐渐凸显。本文梳理了2000年以来有关网络安全意识的研究,综述范围为中国知网中篇名为“网络安全意识”的期刊、硕博论文、会议论文、报纸。网络安全意识的内涵是在“网络安全”“网络安全风险”等相关概念的发展中逐渐明确并丰富起来的,但到目前为止并未出现清晰的概念界定。此领域内的实证研究主要针对网络安全意识现状与问题,其研究对象主要是青少年。网络安全意识教育方面,很多学者总结了国外的成熟经验,但在具体运用上仍缺乏考虑我国的实际状况。 内容目录: 1 网络安全意识的相关
|
2天前
|
SQL 安全 算法
网络安全与信息安全:漏洞、加密技术与安全意识的交织
【10月更文挑战第28天】在数字时代的浪潮中,网络安全与信息安全成为保护个人隐私和企业资产的重要盾牌。本文将深入探讨网络安全中的常见漏洞,介绍加密技术的基本概念及其在保护数据中的应用,并强调提高安全意识的重要性。通过分析具体案例和提供实用的防护措施,旨在为读者提供一个全面的网络安全知识框架,以应对日益复杂的网络威胁。
17 4