OpenCV入门(C++/Python)- 使用OpenCV调整尺寸大小(三)

简介: OpenCV入门(C++/Python)- 使用OpenCV调整尺寸大小(三)

使用OpenCV调整图像大小。要调整图像的大小,可以根据每个轴(高度和宽度)进行缩放,考虑指定的缩放因素,或者只需设置所需的高度和宽度。


调整图像大小时:


如果想在调整后的图像中保持相同的宽高比,请务必记住图像的原始宽高比(即宽度和高度)。

缩小图像的大小需要重新采样像素。

增加图像的大小需要重建图像。这意味着需要插值新像素。

各种插值技术发挥作用来完成这些操作。OpenCV中有几种方法可供选择,选择通常取决于特定的应用程序。


通过调整自定义高度和宽度的大小来使图像越来越小。随着您的进一步发展,我们将讨论使用不同的比例因子和插值方法调整大小。


1.图像尺寸信息


Python


# let's start with the Imports 
import cv2
import numpy as np
# Read the image using imread function
image = cv2.imread('image.jpg')
cv2.imshow('Original Image', image)
# let's downscale the image using new  width and height
down_width = 300
down_height = 200
down_points = (down_width, down_height)
resized_down = cv2.resize(image, down_points, interpolation= cv2.INTER_LINEAR)
# let's upscale the image using new  width and height
up_width = 600
up_height = 400
up_points = (up_width, up_height)
resized_up = cv2.resize(image, up_points, interpolation= cv2.INTER_LINEAR)
# Display images
cv2.imshow('Resized Down by defining height and width', resized_down)
cv2.waitKey()
cv2.imshow('Resized Up image by defining height and width', resized_up)
cv2.waitKey()
#press any key to close the windows
cv2.destroyAllWindows()


C++


// let's start with including libraries 
#include<opencv2/opencv.hpp>
#include<iostream>
// Namespace to nullify use of cv::function(); syntax
using namespace std;
using namespace cv;
int main()
{
  // Read the image using imread function
  Mat image = imread("image.jpg");
  imshow("Original Image", image);
  // let's downscale the image using new  width and height
  int down_width = 300;
  int down_height = 200;
  Mat resized_down;
  //resize down
  resize(image, resized_down, Size(down_width, down_height), INTER_LINEAR);
  // let's upscale the image using new  width and height
  int up_width = 600;
  int up_height = 400;
  Mat resized_up;
  //resize up
  resize(image, resized_up, Size(up_width, up_height), INTER_LINEAR);
  // Display Images and press any key to continue
  imshow("Resized Down by defining height and width", resized_down);
  waitKey();
  imshow("Resized Up image by defining height and width", resized_up);
  waitKey();
  destroyAllWindows();
  return 0;
}


在开始调整图像的大小之前,先了解其原始尺寸。要获取图像的大小:


  • 在Python中使用shape方法
  • C++中的rows和cols参数

Python中的image.shape返回三个值:高度、宽度和通道数。

在C++中:


image.rows:图像的高度

image.columns:图像的宽度

也可以使用size()函数获得上述结果。


image.size().width 返回宽度

image.size().height 返回高度


Python


# Get original height and width
h,w,c = image.shape
print("Original Height and Width:", h,"x", w)


C++


// Get height and width
cout << "Original Height and Width :" << image.rows << "x" << image.cols << endl;


这里需要注意的一件重要事情是,OpenCV以h e i g h t ∗ w i d t h ∗ c h a n n e l s height*width*channelsheight∗width∗channels格式输出图像的形状,而其他一些图像处理库则以宽度、高度的形式输出。对此有合乎逻辑的看法。


当使用OpenCV读取图像时,它们表示为NumPy数组。一般来说,总是用r o w s ∗ c o l u m n s rows*columnsrows∗columns(表示其高度的行和表示其宽度的列)来引用数组的形状。因此,即使使用OpenCV读取图像以获得其形状,相同的NumPy数组规则也会发挥作用。你得到形状的形状是h e i g h t ∗ w i d t h ∗ c h a n n e l s height*width*channelsheight∗width∗channels。


OpenCV resize()函数语法


OpenCV resize()函数语法需要两个输入参数:


源图像。

调整大小图像的所需大小,d大小。

我们将在以下各节中讨论各种输入参数选项。


resize(src, dsize[, dst[, fx[, fy[, interpolation]]]])

src:这是必需的输入图像,它可以是具有输入图像路径的字符串(例如:“test_image.png”)。

dsize:它是输出图像的理想尺寸,它可以是新的高度和宽度。

fx:沿水平轴的缩放因子。

fy:沿垂直轴的缩放因子。

interpolation:它为我们提供了调整图像大小的不同方法的选择。


2.使用自定义宽度和高度调整图像大小


在第一个示例中,让我们通过指定一个新的宽度和高度来调整图像的大小,这将缩小图像的缩放。在以下代码中:


我们将所需的宽度设置为300,所需的高度设置为200。

这两个值组合成一个二维向量,这是resize()函数所要求的。

我们还指定了插值方法,恰好是默认值。


Python


# Set rows and columns 
# lets downsize the image using new  width and height
down_width = 300
down_height = 200
down_points = (down_width, down_height)
resized_down = cv2.resize(image, down_points, interpolation= cv2.INTER_LINEAR)


C++


// Set rows and columns 
// lets downsize the image using new width and height
   int down_width = 300;
   int down_height = 200;
   Mat resize_down;
   // resize down
   resize(image, resize_down, Size(down_width, down_height), INTER_LINEAR);


接下来,我们创建另一个变量来增加图像的大小。


Python


# Set rows and columns
up_width = 600
up_height = 400
up_points = (up_width, up_height)
# resize the image
resized_up = cv2.resize(image, up_points, interpolation = cv2.INTER_LINEAR)


C++


// Set rows and columns
int up_width = 600;
int up_height = 400;
Mat resized_up;
//resize up
resize(image, resized_up, Size(up_width, up_height), INTER_LINEAR);


在上面的Python代码中,我们正在使用resize()函数定义新的宽度和高度来升级图像。过程和步骤与之前的片段相似。


在C++代码中:


我们定义了用于升级的宽度和高度的新整数。

给出输出图像的矩阵。

然后使用resize()函数,与之前的代码相同。

现在,让我们使用OpenCV的imshow()函数显示所有图像。


Python


# Display images
cv2.imshow('Resized Down by defining height and width', resized_down)
cv2.waitKey()
cv2.imshow('Resized Up image by defining height and width', resized_up)
cv2.waitKey()
cv2.destroyAllWindows()


C++


// Display Images and press any key to continue
imshow("Resized Down by defining height and width", resized_down);
waitKey();
imshow("Resized Up image by defining height and width", resized_up);
waitKey();
destroyAllWindows();


3.使用缩放因子调整图像的大小


现在我们用缩放因子调整图像的大小。但在更进一步之前,你需要了解什么是缩放因素。


缩放因子通常是尺度缩放或乘以某些数量的数字,在图像中尺寸是图像的宽度和高度。缩放因子有助于保持宽高比完好无损,并保持显示质量。因此,在您升级或缩小缩放图像时,图像不会显得失真。


Python


# Scaling Up the image 1.2 times by specifying both scaling factors
scale_up_x = 1.2
scale_up_y = 1.2
# Scaling Down the image 0.6 times specifying a single scale factor.
scale_down = 0.6
scaled_f_down = cv2.resize(image, None, fx= scale_down, fy= scale_down, interpolation= cv2.INTER_LINEAR)
scaled_f_up = cv2.resize(image, None, fx= scale_up_x, fy= scale_up_y, interpolation= cv2.INTER_LINEAR)


C++


// Scaling Up the image 1.2 times by specifying both scaling factors
double scale_up_x = 1.2;
double scale_up_y = 1.2;
// Scaling Down the image 0.6 times specifying a single scale factor.
double scale_down = 0.6;
Mat scaled_f_up, scaled_f_down;
//resize 
resize(image,scaled_f_down, Size(), scale_down, scale_down, INTER_LINEAR);
resize(image, scaled_f_up, Size(), scale_up_x, scale_up_y, INTER_LINEAR);


在上面的Python代码中:


我们沿着水平和垂直轴定义了新的缩放因素。

定义缩放因子,就不需要对增加新的图像宽度和高度。因此,值为None。

在上面的C++代码中:


我们定义了新的缩放因子以及新图像的矩阵。

由于我们不需要新的宽度和高度点,我们保持Size()为空,并使用resize()函数

现在,让我们展示图像,以便可视化和更好地理解。


Python


# Display images and press any key to check next image
cv2.imshow('Resized Down by defining scaling factor', scaled_f_down)
cv2.waitKey()
cv2.imshow('Resized Up image by defining scaling factor', scaled_f_up)
cv2.waitKey()


C++


// Display images and Press any key to continue check next image
imshow("Resized Down by defining scaling factor", scaled_f_down);
waitKey();
imshow("Resized Up by defining scaling factor", scaled_f_up);
waitKey();


4.使用不同的插值方法调整大小


不同的插值方法用于调整不同的尺寸大小。


INTER_AREA:INTER_AREA使用像素区域关系进行重新采样。这最适合缩小图像的大小(缩小)。当用于放大图像时,它使用INTER_NEAREST方法。

INTER_CUBIC:这使用双立方插值来调整图像的大小。在调整新像素的大小和插值时,此方法作用于图像的4×4相邻像素。然后,需要16像素的平均权重来创建新的插值像素

INTER_LINEAR:此方法与INTER_CUBIC插值有点相似。但与INTER_CUBIC不同,这使用2×2相邻像素来获得插值像素的加权平均值。

INTER_NEAREST:INTER_NEAREST方法使用最近的邻居概念进行插值。这是最简单的方法之一,仅使用图像中的一个相邻像素进行插值。

如果您不完全理解插值方法,请不要担心。我们将在一个单独的例子中解释它们。


Python


# Scaling Down the image 0.6 times using different Interpolation Method
res_inter_nearest = cv2.resize(image, None, fx= scale_down, fy= scale_down, interpolation= cv2.INTER_NEAREST)
res_inter_linear = cv2.resize(image, None, fx= scale_down, fy= scale_down, interpolation= cv2.INTER_LINEAR)
res_inter_area = cv2.resize(image, None, fx= scale_down, fy= scale_down, interpolation= cv2.INTER_AREA)


C++


# Scaling Down the image 0.6 using different Interpolation Method
Mat res_inter_linear, res_inter_nearest, res_inter_area;
resize(image, res_inter_linear, Size(), scale_down, scale_down, INTER_LINEAR);
resize(image, res_inter_nearest, Size(), scale_down, scale_down, INTER_NEAREST);
resize(image, res_inter_area, Size(), scale_down, scale_down, INTER_AREA);


在上面的Python片段中,我们正在使用不同的插值方法调整图像的大小。同样,在C++片段中,我们首先为输出图像定义新矩阵,然后使用不同的插值方法调整它们的大小。现在让我们显示图像。


Python


# Concatenate images in horizontal axis for comparison
vertical= np.concatenate((res_inter_nearest, res_inter_linear, res_inter_area), axis = 0)
# Display the image Press any key to continue
cv2.imshow('Inter Nearest :: Inter Linear :: Inter Area', vertical)


C++


Mat a,b,c;
vconcat(res_inter_linear, res_inter_nearest, a);
vconcat(res_inter_area, res_inter_area, b);
vconcat(a, b, c);
// Display the image Press any key to continue
imshow("Inter Linear :: Inter Nearest :: Inter Area :: Inter Area", c);
相关文章
|
2天前
|
缓存 算法 数据处理
Python入门:9.递归函数和高阶函数
在 Python 编程中,函数是核心组成部分之一。递归函数和高阶函数是 Python 中两个非常重要的特性。递归函数帮助我们以更直观的方式处理重复性问题,而高阶函数通过函数作为参数或返回值,为代码增添了极大的灵活性和优雅性。无论是实现复杂的算法还是处理数据流,这些工具都在开发者的工具箱中扮演着重要角色。本文将从概念入手,逐步带你掌握递归函数、匿名函数(lambda)以及高阶函数的核心要领和应用技巧。
Python入门:9.递归函数和高阶函数
|
2天前
|
程序员 UED Python
Python入门:3.Python的输入和输出格式化
在 Python 编程中,输入与输出是程序与用户交互的核心部分。而输出格式化更是对程序表达能力的极大增强,可以让结果以清晰、美观且易读的方式呈现给用户。本文将深入探讨 Python 的输入与输出操作,特别是如何使用格式化方法来提升代码质量和可读性。
Python入门:3.Python的输入和输出格式化
|
2天前
|
机器学习/深度学习 人工智能 算法框架/工具
Python入门:1.Python介绍
Python是一种功能强大、易于学习和运行的解释型高级语言。由**Guido van Rossum**于1991年创建,Python以其简洁、易读和十分工程化的设计而带来了庞大的用户群体和丰富的应用场景。这个语言在全球范围内都被认为是**创新和效率的重要工具**。
Python入门:1.Python介绍
|
2天前
|
开发者 Python
Python入门:8.Python中的函数
### 引言 在编写程序时,函数是一种强大的工具。它们可以将代码逻辑模块化,减少重复代码的编写,并提高程序的可读性和可维护性。无论是初学者还是资深开发者,深入理解函数的使用和设计都是编写高质量代码的基础。本文将从基础概念开始,逐步讲解 Python 中的函数及其高级特性。
Python入门:8.Python中的函数
|
2天前
|
存储 索引 Python
Python入门:6.深入解析Python中的序列
在 Python 中,**序列**是一种有序的数据结构,广泛应用于数据存储、操作和处理。序列的一个显著特点是支持通过**索引**访问数据。常见的序列类型包括字符串(`str`)、列表(`list`)和元组(`tuple`)。这些序列各有特点,既可以存储简单的字符,也可以存储复杂的对象。 为了帮助初学者掌握 Python 中的序列操作,本文将围绕**字符串**、**列表**和**元组**这三种序列类型,详细介绍其定义、常用方法和具体示例。
Python入门:6.深入解析Python中的序列
|
2天前
|
存储 SQL 索引
Python入门:7.Pythond的内置容器
Python 提供了强大的内置容器(container)类型,用于存储和操作数据。容器是 Python 数据结构的核心部分,理解它们对于写出高效、可读的代码至关重要。在这篇博客中,我们将详细介绍 Python 的五种主要内置容器:字符串(str)、列表(list)、元组(tuple)、字典(dict)和集合(set)。
Python入门:7.Pythond的内置容器
|
2天前
|
存储 Linux iOS开发
Python入门:2.注释与变量的全面解析
在学习Python编程的过程中,注释和变量是必须掌握的两个基础概念。注释帮助我们理解代码的意图,而变量则是用于存储和操作数据的核心工具。熟练掌握这两者,不仅能提高代码的可读性和维护性,还能为后续学习复杂编程概念打下坚实的基础。
Python入门:2.注释与变量的全面解析
|
2天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
24 12
|
29天前
|
XML 机器学习/深度学习 人工智能
使用 OpenCV 和 Python 轻松实现人脸检测
本文介绍如何使用OpenCV和Python实现人脸检测。首先,确保安装了OpenCV库并加载预训练的Haar特征模型。接着,通过读取图像或视频帧,将其转换为灰度图并使用`detectMultiScale`方法进行人脸检测。检测到的人脸用矩形框标出并显示。优化方法包括调整参数、多尺度检测及使用更先进模型。人脸检测是计算机视觉的基础技术,具有广泛应用前景。
62 10
|
2天前
|
知识图谱 Python
Python入门:4.Python中的运算符
Python是一间强大而且便捷的编程语言,支持多种类型的运算符。在Python中,运算符被分为算术运算符、赋值运算符、复合赋值运算符、比较运算符和逻辑运算符等。本文将从基础到进阶进行分析,并通过一个综合案例展示其实际应用。

热门文章

最新文章