m基于MPC模型预测控制算法的永磁直线同步电机控制系统simulink仿真,MPC分别使用工具箱和S函数进行设计

简介: m基于MPC模型预测控制算法的永磁直线同步电机控制系统simulink仿真,MPC分别使用工具箱和S函数进行设计

1.算法仿真效果
matlab2022a仿真结果如下:

c217b8b587a702cbe746348c6a47061b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
7cab16dfa4af7c621f04d73417ce94ec_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
MPC(Model Predictive Control)模型预测控制算法是一种先进的控制算法,能够有效地解决非线性、多变量、约束条件等复杂系统的控制问题。永磁直线同步电机是一种高性能、高效率的电机,广泛应用于机器人、医疗设备、工业自动化等领域。MPC(Model Predictive Control)模型预测控制算法是一种先进的控制算法,能够有效地解决非线性、多变量、约束条件等复杂系统的控制问题。永磁直线同步电机是一种高性能、高效率的电机,广泛应用于机器人、医疗设备、工业自动化等领域。本文将介绍基于MPC模型预测控制算法的永磁直线同步电机控制系统的Simulink仿真,包括系统建模、控制器设计、仿真实验等内容。

ecc7184a72e207fc522e38e194cde165_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   直线电机三相绕组通入三相对称的正弦电流,会产生沿展开的直线方向呈正弦形分布的气隙磁场。因为三相正弦电流均为时间的函数,则产生的气隙磁场将按A、B、C相序沿直线移动,该磁场称为行波磁场。
  在MPC控制器中,需要确定系统的状态量、控制量、约束条件和优化目标等参数。本文中,系统的状态量包括电机的位置、速度和电流,控制量为电机的电压指令,约束条件包括电机电压的最大值和最小值,电流的最大值和最小值,优化目标为使电机转动到指定位置和速度。

MPC是一种多变量控制策略,其中涉及了:
过程内环动态模型;控制量的历史数值;在预测区间上的一个最优值方程J。最优控制量可由以上各量求出。
MPC最大的特点在于,相对于LQR控制而言,MPC可以考虑空间状态变量的各种约束,而LQR,PID等控制只能够考虑输入输出变量的各种约束。MPC可应用于线性和非线性系统。

   模型预测算法是在欧美等国家兴起的应用于工业领域的一种优化控制算法。目前经过多年的发展,在工业领域、智能控制领域等都有应用。随着算法的理论的完善,其已经成为工业领域内经常使用的一种经典算法。虽然在各个领域算法的应用存在差异。

   但他们都遵循预测模型、滚动优化、和反馈校正的基本原理。并且,近年来在汽车工业尤其是在车辆智驾驶技术上,模型预测算法的应用越来越受欢迎。很多科研机构利用了模型预测的原理进行了智能车辆的轨迹跟踪控制研究,下面将详细阐述模型预测算法的原理。

(1)预测模型
预测模型是模型预测控制的基础,它能够通过控制系统中被控平台提供的当前系统状态信息,再加上未来的控制输入变量,预测到未来的被控平台的状态。

  预测模型的形式没有确定的形式要求,可以是状态空间方程、传递函数也可以是阶跃响应模型、脉冲响应模型模糊模型等。根据被控对象和需要预测的状态选择合适的预测模型。

对于车辆方向而言,模型预测控制选择状态空间模型比较合适。

(2)滚动优化
预测控制中的优化与通常的离散最优控制算法不同,不是采用一个不变的全局最优目标,而是采用滚动式的有限时域优化策略。

   在每一采样时刻,根据该时刻的优化性能指标,求解该时刻起有限时段的最优控制率。计算得到的控制作用序列也只有当前值是实际执行的,在下一个采样时刻又重新求取最优控制率。

   也就是说,优化过程不是一次离线完成的,而是反复在线进行(即在每一采样时刻,优化性能指标只涉及从该时刻起到未来有限的时间,而到下一个采样时刻,这一优化时段会同时向前推移)。

   通过滚动优化策略,始终在实际的基础上建立新的优化目标,兼顾了对未来有限时域内的理想优化和实际不确定性的影响。这要比建立在理想条件下的传统最优控制更加实际和有效。

(3) 反馈校正
预测控制求解的是一个开环优化问题。在预测控制中,采用预测模型进行过程输出值的预估只是一种理想的方式,对于实际过程,由于存在非线性、时变、模型失配和干扰等不确定因素,使基于模型的预测不可能准确地与实际相符。

  因此,在预测控制中,通过输出的测量值与模型的预估值进行比较,得出模型的预测误差,再利用模型预测误差来校正模型的预测值,从而得到更为准确的将来输出的预测值。正是这种由模型加反馈校正的过程,使预测控制具有很强的抗干扰和克服系统不确定的能力。不断根据系统的实际输出对预测输出做出修正,使滚动优化不但基于模型,而且利用反馈信息,构闭环优化控制。

其内部结构框图如下所示:

fe52479743c2f2cfcd7950f723cf4c94_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

c8a99a4174762521a0208a4300a08bf1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

```function u = MPC_set(M_Ref,ref)
%更新
x0 = Ax0 + Bu0;%no noise
y = C*x0;
%加入约束%速度约束
for ii = 1:Ra
if x0(ii) >=0.5;
x0(ii) = 0.5;
end
end
%差值
Error = (M_Ref(:) - y);

u     = 15*(Pmpc*reshape(ref - Error(:,ones(P,1)),[],1) - Kmpc*x0);
%sat范围限制
if u > 250
   u = 250;
end
if u < -250
   u = -250;
end  

end

end

...............................................................................

P = Pmatrix1;
M = zeros(Cb,Rc);

for i=1
Row2 =(i-1)Cb+1:iCb;
Cow2 =(i-1)Rc+1:iRc;
M(Row2,Cow2) = Gm1;
end

H_matrix = zeros(Rc,Cb);
for k=1:Cb;
H_matrix(:,k) = sum(Pmatrix2(:,k:Cb:end),2);
end

%J = min Y'QY + U'RU
H = H_matrix;
Hs = H'QmatrixH+Rmatrix;
Hs =(Hs+Hs')/2;

K0 = inv(Hs)( H'QmatrixP);
P0 =-inv(Hs)
(-H'QmatrixL-Rmatrix*M);

Kmpc = K0(1:Cd,:);
Pmpc = P0(1:Cd,:);
end
```

相关文章
|
11天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
13天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
6天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
23 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
6天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
36 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
13天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
13天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
13天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
32 3
|
26天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
24天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
25天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。