m基于MPC模型预测控制算法的永磁直线同步电机控制系统simulink仿真,MPC分别使用工具箱和S函数进行设计

简介: m基于MPC模型预测控制算法的永磁直线同步电机控制系统simulink仿真,MPC分别使用工具箱和S函数进行设计

1.算法仿真效果
matlab2022a仿真结果如下:

c217b8b587a702cbe746348c6a47061b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
7cab16dfa4af7c621f04d73417ce94ec_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
MPC(Model Predictive Control)模型预测控制算法是一种先进的控制算法,能够有效地解决非线性、多变量、约束条件等复杂系统的控制问题。永磁直线同步电机是一种高性能、高效率的电机,广泛应用于机器人、医疗设备、工业自动化等领域。MPC(Model Predictive Control)模型预测控制算法是一种先进的控制算法,能够有效地解决非线性、多变量、约束条件等复杂系统的控制问题。永磁直线同步电机是一种高性能、高效率的电机,广泛应用于机器人、医疗设备、工业自动化等领域。本文将介绍基于MPC模型预测控制算法的永磁直线同步电机控制系统的Simulink仿真,包括系统建模、控制器设计、仿真实验等内容。

ecc7184a72e207fc522e38e194cde165_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   直线电机三相绕组通入三相对称的正弦电流,会产生沿展开的直线方向呈正弦形分布的气隙磁场。因为三相正弦电流均为时间的函数,则产生的气隙磁场将按A、B、C相序沿直线移动,该磁场称为行波磁场。
  在MPC控制器中,需要确定系统的状态量、控制量、约束条件和优化目标等参数。本文中,系统的状态量包括电机的位置、速度和电流,控制量为电机的电压指令,约束条件包括电机电压的最大值和最小值,电流的最大值和最小值,优化目标为使电机转动到指定位置和速度。

MPC是一种多变量控制策略,其中涉及了:
过程内环动态模型;控制量的历史数值;在预测区间上的一个最优值方程J。最优控制量可由以上各量求出。
MPC最大的特点在于,相对于LQR控制而言,MPC可以考虑空间状态变量的各种约束,而LQR,PID等控制只能够考虑输入输出变量的各种约束。MPC可应用于线性和非线性系统。

   模型预测算法是在欧美等国家兴起的应用于工业领域的一种优化控制算法。目前经过多年的发展,在工业领域、智能控制领域等都有应用。随着算法的理论的完善,其已经成为工业领域内经常使用的一种经典算法。虽然在各个领域算法的应用存在差异。

   但他们都遵循预测模型、滚动优化、和反馈校正的基本原理。并且,近年来在汽车工业尤其是在车辆智驾驶技术上,模型预测算法的应用越来越受欢迎。很多科研机构利用了模型预测的原理进行了智能车辆的轨迹跟踪控制研究,下面将详细阐述模型预测算法的原理。

(1)预测模型
预测模型是模型预测控制的基础,它能够通过控制系统中被控平台提供的当前系统状态信息,再加上未来的控制输入变量,预测到未来的被控平台的状态。

  预测模型的形式没有确定的形式要求,可以是状态空间方程、传递函数也可以是阶跃响应模型、脉冲响应模型模糊模型等。根据被控对象和需要预测的状态选择合适的预测模型。

对于车辆方向而言,模型预测控制选择状态空间模型比较合适。

(2)滚动优化
预测控制中的优化与通常的离散最优控制算法不同,不是采用一个不变的全局最优目标,而是采用滚动式的有限时域优化策略。

   在每一采样时刻,根据该时刻的优化性能指标,求解该时刻起有限时段的最优控制率。计算得到的控制作用序列也只有当前值是实际执行的,在下一个采样时刻又重新求取最优控制率。

   也就是说,优化过程不是一次离线完成的,而是反复在线进行(即在每一采样时刻,优化性能指标只涉及从该时刻起到未来有限的时间,而到下一个采样时刻,这一优化时段会同时向前推移)。

   通过滚动优化策略,始终在实际的基础上建立新的优化目标,兼顾了对未来有限时域内的理想优化和实际不确定性的影响。这要比建立在理想条件下的传统最优控制更加实际和有效。

(3) 反馈校正
预测控制求解的是一个开环优化问题。在预测控制中,采用预测模型进行过程输出值的预估只是一种理想的方式,对于实际过程,由于存在非线性、时变、模型失配和干扰等不确定因素,使基于模型的预测不可能准确地与实际相符。

  因此,在预测控制中,通过输出的测量值与模型的预估值进行比较,得出模型的预测误差,再利用模型预测误差来校正模型的预测值,从而得到更为准确的将来输出的预测值。正是这种由模型加反馈校正的过程,使预测控制具有很强的抗干扰和克服系统不确定的能力。不断根据系统的实际输出对预测输出做出修正,使滚动优化不但基于模型,而且利用反馈信息,构闭环优化控制。

其内部结构框图如下所示:

fe52479743c2f2cfcd7950f723cf4c94_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

c8a99a4174762521a0208a4300a08bf1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

```function u = MPC_set(M_Ref,ref)
%更新
x0 = Ax0 + Bu0;%no noise
y = C*x0;
%加入约束%速度约束
for ii = 1:Ra
if x0(ii) >=0.5;
x0(ii) = 0.5;
end
end
%差值
Error = (M_Ref(:) - y);

u     = 15*(Pmpc*reshape(ref - Error(:,ones(P,1)),[],1) - Kmpc*x0);
%sat范围限制
if u > 250
   u = 250;
end
if u < -250
   u = -250;
end  

end

end

...............................................................................

P = Pmatrix1;
M = zeros(Cb,Rc);

for i=1
Row2 =(i-1)Cb+1:iCb;
Cow2 =(i-1)Rc+1:iRc;
M(Row2,Cow2) = Gm1;
end

H_matrix = zeros(Rc,Cb);
for k=1:Cb;
H_matrix(:,k) = sum(Pmatrix2(:,k:Cb:end),2);
end

%J = min Y'QY + U'RU
H = H_matrix;
Hs = H'QmatrixH+Rmatrix;
Hs =(Hs+Hs')/2;

K0 = inv(Hs)( H'QmatrixP);
P0 =-inv(Hs)
(-H'QmatrixL-Rmatrix*M);

Kmpc = K0(1:Cd,:);
Pmpc = P0(1:Cd,:);
end
```

相关文章
|
2月前
|
人工智能 自然语言处理 算法
算法及模型合规:刻不容缓的企业行动指南
随着AI技术迅猛发展,算法与模型成为企业数字化转型的核心。然而,国家密集出台多项法规,如《人工智能生成合成内容标识办法》等,并开展“清朗·整治AI技术滥用”专项行动,标志着AI监管进入严格阶段。算法备案从“可选项”变为“必选项”,未合规可能面临罚款甚至刑事责任。同时,多地提供备案奖励政策,合规既是规避风险的需要,也是把握政策红利和市场信任的机遇。企业需系统规划合规工作,从被动应对转向主动引领,以适应AI时代的挑战与机遇。
|
3月前
|
机器学习/深度学习 存储 算法
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。
188 10
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
|
3月前
|
传感器 算法 数据安全/隐私保护
基于PI控制算法的异步感应电机转速控制系统simulink建模与仿真
本课题研究基于PI控制算法的异步感应电机转速控制系统,利用Simulink建模与仿真。PI控制器结合比例与积分部分,实现快速响应和稳态误差消除。系统通过速度传感器反馈实际转速,经SPWM调制驱动电机,形成闭环控制。仿真中设置不同参考速度(如600-&gt;800、1500-&gt;2200等),验证系统性能。模型基于MATLAB 2022a开发,适用于电机高效稳定运行的研究与应用。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
151 6
|
4月前
|
传感器 算法 数据安全/隐私保护
基于PI控制算法的pwm直流电机控制系统Simulink建模与仿真
本课题基于PI控制算法的PWM直流电机控制系统在Simulink中建模与仿真,对比了传统PI控制器的效果。结果显示,基于PI控制算法的PWM系统在控制性能上更优,具有更好的动态响应和稳态精度。系统通过实时调整PWM信号占空比,实现对电机转速的精确控制。核心程序使用MATLAB 2022a编写,仿真结果无水印展示。系统包括传感器、PI控制器和PWM发生器三大部分,通过合理整定PI参数,可优化系统性能,减少超调量并加快响应速度。
|
4月前
|
算法 数据挖掘 数据安全/隐私保护
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
|
5月前
|
算法 数据安全/隐私保护
基于ADRC自抗扰算法的UAV飞行姿态控制系统simulink建模与仿真
本课题基于ADRC自抗扰算法,使用MATLAB2022a在Simulink中建模与仿真UAV飞行姿态控制系统,分别对偏航(Yaw)、俯仰(Pitch)和滚转(Roll)进行控制。ADRC通过扩展状态观测器(ESO)实时估计并抵消扰动,结合非线性反馈控制策略,减少了对精确模型的依赖,增强了系统的鲁棒性和适应性。仿真结果显示该方法能有效实现UAV的姿态控制,确保其在复杂环境中的稳定飞行和精确操控。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
28天前
|
算法 JavaScript 数据安全/隐私保护
基于遗传算法的256QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容展示了基于GA(遗传算法)优化的256QAM概率星座整形(PCS)技术的研究与实现。通过Matlab仿真,分析了优化前后星座图和误码率(BER)的变化。256QAM采用非均匀概率分布(Maxwell-Boltzman分布)降低外圈星座点出现频率,减小平均功率并增加最小欧氏距离,从而提升传输性能。GA算法以BER为适应度函数,搜索最优整形参数v,显著降低误码率。核心程序实现了GA优化过程,包括种群初始化、选择、交叉、变异等步骤,并绘制了优化曲线。此研究有助于提高频谱效率和传输灵活性,适用于不同信道环境。
48 10