Day01-机器学习-综合分类数据集(Python)

简介: Day01-机器学习-综合分类数据集(Python)

01-包安装

pip install scikit-learn

02-检验是否安装成功

import sklearn
print(sklearn.__version__)

03-相关库介绍

3.1 Numpy库

Numpy是一个扩展的程序库,支持维度数组和矩阵运算,还针对数组运算提供大量的数学函数库。通常来说比较经常见到的是一维和二维数组,多维数组比较少见。

3.2 sklearn库

sklearn,全称scikit-learn,是python中的机器学习库,建立在numpy、scipy、matplotlib等数据科学包的基础之上,涵盖了机器学习中的样例数据、数据预处理、模型验证、特征选择、分类、回归、聚类、降维等几乎所有环节,功能十分强大

3.3 matplotlib库

Matplotlib是一个Python中广泛使用的绘图库,可以用于创建各种类型的静态、动态或交互式图表和可视化。它提供了一系列函数和工具,使得用户可以很方便地对数据进行处理和分析,并将其以图形化的方式呈现出来。

综合分类数据集

4.1 make_classification用法

make_classification函数中,各参数的意义如下:

  • n_samples:生成的样本总数。
  • n_features:生成的特征数(或维度数)。
  • n_informative:在生成样本中有意义的特征数。
  • n_redundant:在生成样本中冗余(不相关)特征的数量。
  • n_clusters_per_class:每个类别中的聚类数量。如果设置为1,则每个类别只包含一个聚类,样本点是线性可分的;如果设置为大于1的值,则生成的样本点可以不是线性可分的。
  • random_state:随机种子,用于控制生成的样本的随机性。
    这些参数一起影响了生成样本的特征和类别的分布。通过调整这些参数的值,可以生成不同特征和类别分布的样本集,用于机器学习任务和模型测试。

# 定义数据集
x, y = make_classification(n_samples=1000, 
                           n_features=2, 
                           n_informative=2, 
                           n_redundant=0, 
                           n_clusters_per_class=1, 
                           random_state=4)

该代码段创建了一个具有2个特征的数据集,总共包含1000个样本。其中,每个样本有2个有信息量的特征(n_informative=2),没有冗余特征(n_redundant=0),每个类别只包含一个聚类(n_clusters_per_class=1)。通过设置这些参数,生成的数据集具有明确的特征分布,可以用于分类问题的模型训练和评估。

4.2 综合分类数据集

from numpy import where
from sklearn.datasets import make_classification
from matplotlib import pyplot
# 定义数据集
X, y = make_classification(n_samples=1000,
                           n_features=2,
                           n_informative=2,
                           n_redundant=0,
                           n_clusters_per_class=1,
                           random_state=4)
# 为每个类的样本创建散点图
for class_value in range(2):
    # 获取此类的示例的行索引
    row_ix = where(y == class_value)
    # 创建这些样本的散布
    pyplot.scatter(X[row_ix, 0], X[row_ix, 1])
    # 绘制散点图
pyplot.show()

结果图如下所示:


89.png


image.png


完结撒花!


目录
相关文章
|
6天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
17 3
|
10天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
20 1
|
16天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
22天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
16 1
|
22天前
|
机器学习/深度学习 API 计算机视觉
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
18 2
|
22天前
|
机器学习/深度学习 算法 数据可视化
机器学习的核心功能:分类、回归、聚类与降维
机器学习领域的基本功能类型通常按照学习模式、预测目标和算法适用性来分类。这些类型包括监督学习、无监督学习、半监督学习和强化学习。
22 0
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
24天前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
50 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
5天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。