大数据技术之Hive1

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据技术之Hive

第1章 Hive入门

1.1 什么是Hive

1)Hive简介

Hive是由Facebook开源,基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。


那为什么会有Hive呢?它是为了解决什么问题而诞生的呢?


下面通过一个案例,来快速了解一下Hive。


例如:需求,统计单词出现个数。


(1)在Hadoop课程中我们用MapReduce程序实现的,当时需要写Mapper、Reducer和Driver三个类,并实现对应逻辑,相对繁琐。

test表
id列
atguigu
atguigu
ss
ss
jiao
banzhang
xue
hadoop

(2)如果通过Hive SQL实现,一行就搞定了,简单方便,容易理解。

select count(*) from test group by id;

2)Hive本质


Hive是一个Hadoop客户端,用于将HQL(Hive SQL)转化成MapReduce程序。


(1)Hive中每张表的数据存储在HDFS


(2)Hive分析数据底层的实现是MapReduce(也可配置为Spark或者Tez)


(3)执行程序运行在Yarn上

1.2 Hive架构原理

1)用户接口:Client


CLI(command-line interface)、JDBC/ODBC。


说明:JDBC和ODBC的区别。


(1)JDBC的移植性比ODBC好;(通常情况下,安装完ODBC驱动程序之后,还需要经过确定的配置才能够应用。而不相同的配置在不相同数据库服务器之间不能够通用。所以,安装一次就需要再配置一次。JDBC只需要选取适当的JDBC数据库驱动程序,就不需要额外的配置。在安装过程中,JDBC数据库驱动程序会自己完成有关的配置。)


(2)两者使用的语言不同,JDBC在Java编程时使用,ODBC一般在C/C++编程时使用。


2)元数据:Metastore


元数据包括:数据库(默认是default)、表名、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等。


默认存储在自带的derby数据库中,由于derby数据库只支持单客户端访问,生产环境中为了多人开发,推荐使用MySQL存储Metastore。


3)驱动器:Driver


(1)解析器(SQLParser):将SQL字符串转换成抽象语法树(AST)


(2)语义分析(Semantic Analyzer):将AST进一步划分为QeuryBlock


(3)逻辑计划生成器(Logical Plan Gen):将语法树生成逻辑计划


(4)逻辑优化器(Logical Optimizer):对逻辑计划进行优化


(5)物理计划生成器(Physical Plan Gen):根据优化后的逻辑计划生成物理计划


(6)物理优化器(Physical Optimizer):对物理计划进行优化


(7)执行器(Execution):执行该计划,得到查询结果并返回给客户端


讲解地址:https://www.bilibili.com/video/BV1g84y147sX?p=4&vd_source=eb68502f30a10ee7e5e6328b4db887ac


4)Hadoop


使用HDFS进行存储,可以选择MapReduce/Tez/Spark进行计算。


第2章 Hive安装

2.1 Hive安装地址

1)Hive官网地址

http://hive.apache.org/

2)文档查看地址


https://cwiki.apache.org/confluence/display/Hive/GettingStarted


3)下载地址


http://archive.apache.org/dist/hive/


4)github地址


https://github.com/apache/hive


2.2 Hive安装部署

2.2.1 安装Hive

1)把apache-hive-3.1.3-bin.tar.gz上传到Linux的/opt/software目录下

2)解压apache-hive-3.1.3-bin.tar.gz到/opt/module/目录下面

[atguigu@hadoop102 software]$ tar -zxvf /opt/software/apache-hive-3.1.3-bin.tar.gz -C /opt/module/


3)修改apache-hive-3.1.3-bin.tar.gz的名称为hive


[atguigu@hadoop102 software]$ mv /opt/module/apache-hive-3.1.3-bin/ /opt/module/hive

4)修改/etc/profile.d/my_env.sh,添加环境变量

[atguigu@hadoop102 software]$ sudo vim /etc/profile.d/my_env.sh

(1)添加内容

#HIVE_HOME
export HIVE_HOME=/opt/module/hive
export PATH=$PATH:$HIVE_HOME/bin

(2)source一下


[atguigu@hadoop102 hive]$ source /etc/profile.d/my_env.sh


5)初始化元数据库(默认是derby数据库)


[atguigu@hadoop102 hive]$ bin/schematool -dbType derby -initSchema


2.2.2 启动并使用Hive

1)启动Hive

[atguigu@hadoop102 hive]$ bin/hive

2)使用Hive

hive> show databases;
hive> show tables;
hive> create table stu(id int, name string);
hive> insert into stu values(1,"ss");
hive> select * from stu;

观察HDFS的路径/user/hive/warehouse/stu,体会Hive与Hadoop之间的关系。

Hive中的表在Hadoop中是目录;Hive中的数据在Hadoop中是文件。

3)在Xshell窗口中开启另一个窗口开启Hive,在/tmp/atguigu目录下监控hive.log文件

[atguigu@hadoop102 atguigu]$ tail -f hive.log

Caused by: ERROR XSDB6: Another instance of Derby may have already booted the database /opt/module/hive/metastore_db.
        at org.apache.derby.iapi.error.StandardException.newException(Unknown Source)
        at org.apache.derby.iapi.error.StandardException.newException(Unknown Source)
        at org.apache.derby.impl.store.raw.data.BaseDataFileFactory.privGetJBMSLockOnDB(Unknown Source)
        at org.apache.derby.impl.store.raw.data.BaseDataFileFactory.run(Unknown Source)
...

原因在于Hive默认使用的元数据库为derby。derby数据库的特点是同一时间只允许一个客户端访问。如果多个Hive客户端同时访问,就会报错。由于在企业开发中,都是多人协作开发,需要多客户端同时访问Hive,怎么解决呢?我们可以将Hive的元数据改为用MySQL存储,MySQL支持多客户端同时访问。


4)首先退出hive客户端。然后在Hive的安装目录下将derby.log和metastore_db删除,顺便将HDFS上目录删除


hive> quit;


[atguigu@hadoop102 hive]$ rm -rf derby.log metastore_db


[atguigu@hadoop102 hive]$ hadoop fs -rm -r /user


5)删除HDFS中/user/hive/warehouse/stu中数据

2.3 MySQL安装

2.3.1 安装MySQL1)上传MySQL安装包以及MySQL驱动jar包


mysql-5.7.28-1.el7.x86_64.rpm-bundle.tar


mysql-connector-java-5.1.37.jar


2)解压MySQL安装包


[atguigu@hadoop102 software]$ mkdir mysql_lib


[atguigu@hadoop102 software]$ tar -xf mysql-5.7.28-1.el7.x86_64.rpm-bundle.tar -C mysql_lib/


3)卸载系统自带的mariadb


[atguigu@hadoop102 ~]$ sudo rpm -qa | grep mariadb | xargs sudo rpm -e --nodeps


4)安装MySQL依赖


[atguigu@hadoop102 software]$ cd mysql_lib


[atguigu@hadoop102 mysql_lib]$ sudo rpm -ivh mysql-community-common-5.7.28-1.el7.x86_64.rpm


[atguigu@hadoop102 mysql_lib]$ sudo rpm -ivh mysql-community-libs-5.7.28-1.el7.x86_64.rpm


[atguigu@hadoop102 mysql_lib]$ sudo rpm -ivh mysql-community-libs-compat-5.7.28-1.el7.x86_64.rpm


5)安装mysql-client


[atguigu@hadoop102 mysql_lib]$ sudo rpm -ivh mysql-community-client-5.7.28-1.el7.x86_64.rpm


6)安装mysql-server


[atguigu@hadoop102 mysql_lib]$ sudo rpm -ivh mysql-community-server-5.7.28-1.el7.x86_64.rpm


注意:若出现以下错误

warning: 05_mysql-community-server-5.7.16-1.el7.x86_64.rpm: Header V3 DSA/SHA1 Signature, key ID 5072e1f5: NOKEY
error: Failed dependencies:
libaio.so.1()(64bit) is needed by mysql-community-server-5.7.16-1.el7.x86_64

解决办法:


[atguigu@hadoop102 software]$ sudo yum -y install libaio


7)启动MySQL


[atguigu@hadoop102 software]$ sudo systemctl start mysqld


8)查看MySQL密码


[atguigu@hadoop102 software]$ sudo cat /var/log/mysqld.log | grep password

2.3.2 配置MySQL

配置主要是root用户 + 密码,在任何主机上都能登录MySQL数据库。

1)用刚刚查到的密码进入MySQL(如果报错,给密码加单引号)

[atguigu@hadoop102 software]$ mysql -uroot -p'password'

2)设置复杂密码(由于MySQL密码策略,此密码必须足够复杂)

mysql> set password=password("Qs23=zs32");

3)更改MySQL密码策略

mysql> set global validate_password_policy=0;

mysql> set global validate_password_length=4;

4)设置简单好记的密码

mysql> set password=password("123456");

5)进入MySQL库

mysql> use mysql

6)查询user表

mysql> select user, host from user;

7)修改user表,把Host表内容修改为%

mysql> update user set host="%" where user="root";

8)刷新

mysql> flush privileges;

9)退出

mysql> quit;

2.3.3 卸载MySQL说明

若因为安装失败或者其他原因,MySQL需要卸载重装,可参考以下内容。


(1)清空原有数据

①通过/etc/my.cnf查看MySQL数据的存储位置

[atguigu@hadoop102 software]$ sudo cat /etc/my.cnf
[mysqld]
datadir=/var/lib/mysql

②去往/var/lib/mysql路径需要root权限

[atguigu@hadoop102 mysql]$ su - root
[root@hadoop102 ~]# cd /var/lib/mysql
[root@hadoop102 mysql]# rm -rf *  (注意敲击命令的位置)

(2)卸载MySQL相关包

①查看安装过的MySQL相关包

[atguigu@hadoop102 software]$ sudo rpm -qa | grep -i -E mysql
mysql-community-libs-5.7.16-1.el7.x86_64
mysql-community-client-5.7.16-1.el7.x86_64
mysql-community-common-5.7.16-1.el7.x86_64
mysql-community-libs-compat-5.7.16-1.el7.x86_64
mysql-community-server-5.7.16-1.el7.x86_64

②一键卸载命令

[atguigu@hadoop102 software]$ rpm -qa | grep -i -E mysql\|mariadb | xargs -n1 sudo rpm -e --nodeps

2.4 配置Hive元数据存储到MySQL

2.4.1 配置元数据到MySQL

1)新建Hive元数据库

#登录MySQL
[atguigu@hadoop102 software]$ mysql -uroot -p123456
#创建Hive元数据库
mysql> create database metastore;
mysql> quit;

2)将MySQL的JDBC驱动拷贝到Hive的lib目录下。

[atguigu@hadoop102 software]$ cp /opt/software/mysql-connector-java-5.1.37.jar $HIVE_HOME/lib

3)在$HIVE_HOME/conf目录下新建hive-site.xml文件

[atguigu@hadoop102 software]$ vim $HIVE_HOME/conf/hive-site.xml

添加如下内容:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
    <!-- jdbc连接的URL -->
    <property>
        <name>javax.jdo.option.ConnectionURL</name>
        <value>jdbc:mysql://hadoop102:3306/metastore?useSSL=false</value>
    </property>
    <!-- jdbc连接的Driver-->
    <property>
        <name>javax.jdo.option.ConnectionDriverName</name>
        <value>com.mysql.jdbc.Driver</value>
    </property>
  <!-- jdbc连接的username-->
    <property>
        <name>javax.jdo.option.ConnectionUserName</name>
        <value>root</value>
    </property>
    <!-- jdbc连接的password -->
    <property>
        <name>javax.jdo.option.ConnectionPassword</name>
        <value>123456</value>
    </property>
    <!-- Hive默认在HDFS的工作目录 -->
    <property>
        <name>hive.metastore.warehouse.dir</name>
        <value>/user/hive/warehouse</value>
    </property>
</configuration>

5)初始化Hive元数据库(修改为采用MySQL存储元数据)

[atguigu@hadoop102 hive]$ bin/schematool -dbType mysql -initSchema -verbose

2.4.2 验证元数据是否配置成功

1)再次启动Hive

[atguigu@hadoop102 hive]$ bin/hive

2)使用Hive

hive> show databases;
hive> show tables;
hive> create table stu(id int, name string);
hive> insert into stu values(1,"ss");
hive> select * from stu;

3)在Xshell窗口中开启另一个窗口开启Hive(两个窗口都可以操作Hive,没有出现异常)

hive> show databases;
hive> show tables;
hive> select * from stu;

2.4.3 查看MySQL中的元数据

1)登录MySQL

[atguigu@hadoop102 hive]$ mysql -uroot -p123456

2)查看元数据库metastore

mysql> show databases;
mysql> use metastore;
mysql> show tables;

(1)查看元数据库中存储的库信息

(2)查看元数据库中存储的表信息

(3)查看元数据库中存储的表中列相关信息

2.5 Hive服务部署

2.5.1 hiveserver2服务

Hive的hiveserver2服务的作用是提供jdbc/odbc接口,为用户提供远程访问Hive数据的功能,例如用户期望在个人电脑中访问远程服务中的Hive数据,就需要用到Hiveserver2。

1)用户说明

在远程访问Hive数据时,客户端并未直接访问Hadoop集群,而是由Hivesever2代理访问。由于Hadoop集群中的数据具备访问权限控制,所以此时需考虑一个问题:那就是访问Hadoop集群的用户身份是谁?是Hiveserver2的启动用户?还是客户端的登录用户?


答案是都有可能,具体是谁,由Hiveserver2的hive.server2.enable.doAs参数决定,该参数的含义是是否启用Hiveserver2用户模拟的功能。若启用,则Hiveserver2会模拟成客户端的登录用户去访问Hadoop集群的数据,不启用,则Hivesever2会直接使用启动用户访问Hadoop集群数据。模拟用户的功能,默认是开启的。


具体逻辑如下:


未开启用户模拟功能:

开启用户模拟功能:

生产环境,推荐开启用户模拟功能,因为开启后才能保证各用户之间的权限隔离。

2)hiveserver2部署

(1)Hadoop端配置

hivesever2的模拟用户功能,依赖于Hadoop提供的proxy user(代理用户功能),只有Hadoop中的代理用户才能模拟其他用户的身份访问Hadoop集群。因此,需要将hiveserver2的启动用户设置为Hadoop的代理用户,配置方式如下:


修改配置文件core-site.xml,然后记得分发三台机器

[atguigu@hadoop102 ~]$ cd $HADOOP_HOME/etc/hadoop
[atguigu@hadoop102 hadoop]$ vim core-site.xml

增加如下配置:

<!--配置所有节点的atguigu用户都可作为代理用户-->
<property>
    <name>hadoop.proxyuser.atguigu.hosts</name>
    <value>*</value>
</property>
<!--配置atguigu用户能够代理的用户组为任意组-->
<property>
    <name>hadoop.proxyuser.atguigu.groups</name>
    <value>*</value>
</property>
<!--配置atguigu用户能够代理的用户为任意用户-->
<property>
    <name>hadoop.proxyuser.atguigu.users</name>
    <value>*</value>
</property>

(2)Hive端配置

在hive-site.xml文件中添加如下配置信息

[atguigu@hadoop102 conf]$ vim hive-site.xml

<!-- 指定hiveserver2连接的host -->
<property>
  <name>hive.server2.thrift.bind.host</name>
  <value>hadoop102</value>
</property>
<!-- 指定hiveserver2连接的端口号 -->
<property>
  <name>hive.server2.thrift.port</name>
  <value>10000</value>
</property>


3)测试


(1)启动hiveserver2


[atguigu@hadoop102 hive]$ bin/hive --service hiveserver2


(2)使用命令行客户端beeline进行远程访问


启动beeline客户端


[atguigu@hadoop102 hive]$ bin/beeline -u jdbc:hive2://hadoop102:10000 -n atguigu


看到如下界面

Connecting to jdbc:hive2://hadoop102:10000
Connected to: Apache Hive (version 3.1.3)
Driver: Hive JDBC (version 3.1.3)
Transaction isolation: TRANSACTION_REPEATABLE_READ
Beeline version 3.1.3 by Apache Hive
0: jdbc:hive2://hadoop102:10000>

(3)使用Datagrip图形化客户端进行远程访问

4)配置DataGrip连接

(1)创建连接

(2)配置连接属性

所有属性配置,和Hive的beeline客户端配置一致即可。初次使用,配置过程会提示缺少JDBC驱动,按照提示下载即可。

(3)界面介绍

(4)测试sql执行

(5)修改数据库

2.5.2 metastore服务

Hive的metastore服务的作用是为Hive CLI或者Hiveserver2提供元数据访问接口。

1)metastore运行模式

metastore有两种运行模式,分别为嵌入式模式和独立服务模式。下面分别对两种模式进行说明:

(1)嵌入式模式


(2)独立服务模式

生产环境中,不推荐使用嵌入式模式。因为其存在以下两个问题:

(1)嵌入式模式下,每个Hive CLI都需要直接连接元数据库,当Hive CLI较多时,数据库压力会比较大。

(2)每个客户端都需要用户元数据库的读写权限,元数据库的安全得不到很好的保证。

2)metastore部署

(1)嵌入式模式

嵌入式模式下,只需保证Hiveserver2和每个Hive CLI的配置文件hive-site.xml中包含连接元数据库所需要的以下参数即可:

    <!-- jdbc连接的URL -->
    <property>
        <name>javax.jdo.option.ConnectionURL</name>
        <value>jdbc:mysql://hadoop102:3306/metastore?useSSL=false</value>
    </property>
    <!-- jdbc连接的Driver-->
    <property>
        <name>javax.jdo.option.ConnectionDriverName</name>
        <value>com.mysql.jdbc.Driver</value>
    </property>
  <!-- jdbc连接的username-->
    <property>
        <name>javax.jdo.option.ConnectionUserName</name>
        <value>root</value>
    </property>
    <!-- jdbc连接的password -->
    <property>
        <name>javax.jdo.option.ConnectionPassword</name>
        <value>123456</value>
    </property>

(2)独立服务模式

独立服务模式需做以下配置:

首先,保证metastore服务的配置文件hive-site.xml中包含连接元数据库所需的以下参数:

    <!-- jdbc连接的URL -->
    <property>
        <name>javax.jdo.option.ConnectionURL</name>
        <value>jdbc:mysql://hadoop102:3306/metastore?useSSL=false</value>
    </property>
    <!-- jdbc连接的Driver-->
    <property>
        <name>javax.jdo.option.ConnectionDriverName</name>
        <value>com.mysql.jdbc.Driver</value>
    </property>
  <!-- jdbc连接的username-->
    <property>
        <name>javax.jdo.option.ConnectionUserName</name>
        <value>root</value>
    </property>
    <!-- jdbc连接的password -->
    <property>
        <name>javax.jdo.option.ConnectionPassword</name>
        <value>123456</value>
    </property>
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
26天前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
13天前
|
存储 分布式计算 数据可视化
大数据常用技术与工具
【10月更文挑战第16天】
55 4
|
26天前
|
存储 数据采集 监控
大数据技术:开启智能决策与创新服务的新纪元
【10月更文挑战第5天】大数据技术:开启智能决策与创新服务的新纪元
|
2天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
20 1
|
4天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
23 2
|
5天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
21 1
|
26天前
|
存储 分布式计算 druid
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
50 1
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
|
2月前
|
机器学习/深度学习 运维 分布式计算
大数据技术专业就业前景
大数据技术专业就业前景广阔,广泛应用于互联网、金融、医疗等众多行业,助力企业数字化转型。岗位涵盖大数据开发、分析、运维及管理,如大数据工程师、分析师和系统运维工程师等。这些岗位因专业性和稀缺性而享有优厚薪资,尤其在一线城市可达20万至50万年薪。随着技术进步和经验积累,从业者可晋升为高级职位或投身数据咨询、创业等领域,发展空间巨大。
49 5
|
2月前
|
人工智能 编解码 搜索推荐
大模型、大数据与显示技术深度融合 加速智慧医疗多元化场景落地
大模型、大数据与显示技术深度融合 加速智慧医疗多元化场景落地
|
26天前
|
存储 数据采集 分布式计算
大数据技术:开启智能时代的新引擎
【10月更文挑战第5天】大数据技术:开启智能时代的新引擎