【Pandas】数据分析入门

简介: 【Pandas】数据分析入门

前言


大家好,我是初心,很高兴再次和大家见面。这篇文章主要讲解Python数据分析三剑客之一——Pandas的数据分析运算,收录于初心的《大数据》专栏。


一、Pandas简介


1.1 什么是Pandas


Pandas 是基于NumPy 的一种工具,该工具是为了 解决数据分析任务而创建的 。官方对它的解释是 “强大的Python数据分析支持库” ,Pandas 名字衍生自术语 “panel data”(面板数据)和 “Python data analysis”(Python 数据分析)。Pandas官网


Pandas 可以从各种文件格式比如 CSV、JSON、SQL、Microsoft Excel 导入数据。


1.2 Pandas应用


Pandas 的主要数据结构是 Series (一维数据)与 DataFrame(二维数据),这两种数据结构足以处理金融、统计、社会科学、工程等领域里的大多数典型用例。


Series 是一种类似于 一维数组 的对象,它由一组数据(各种Numpy数据类型)以及一组与之相关的数据标签(即索引)组成。


DataFrame 是一个 表格型 的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典。


二、Series结构


2.1 Series简介


Pandas Series 类似表格中的一个列(column),类似于一维数组,可以保存任何数据类型。


Series 由索引(index)和列组成,构造函数如下:

pandas.Series( data, index, dtype, name, copy)


参数 说明
data 一组数据(ndarray 类型)
index 数据索引标签,如果不指定,默认从 0 开始
dtype 数据类型,默认会自己判断
name 设置名称
copy 拷贝数据,默认为 False


Series简单示例代码和输出结果如下:

import pandas as pd
# 数据
a = [1,2,3]
# Series对象,会将列表数据转化为一列
myvar = pd.Series(a)
print(myvar)



c84ffcd634f948b8b7ebf8ac68a74bd5.png


2.2 基本使用


  • 根据索引值读取数据
# 下标
print(myvar[0])
# 切片
print(myvar[:3])

f43b105b0fcc437fb01ec178d20d30a2.png

  • 设置索引
myvar = pd.Series(a,index=["x","y","z"])



f7b97b737d324f5f839cef8f40675aba.png

  • 使用字典创建Series对象
sites = {1: 'Google', 2: 'Edge', 3: 'Firefox'}
myvar = pd.Series(sites)
print(myvar)

bfe52313cd3e4c84883b70f5f620bd79.png


  • 设置Series名称
myvar = pd.Series(sites,name='Pandas Test')


3a8b4a4a1abb41bdbb85539c542ed969.png


三、DataFrame结构


3.1 DataFrame简介


DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。

DataFrame 的 每一行数据 都可以看成一个 Series 结构,只不过,DataFrame 为这些行中每个数据值增加了一个列标签。因此 DataFrame 其实是从 Series 的基础上演变而来。


可以这么说,掌握了 DataFrame 的用法,你就拥有了学习数据分析的基本能力。


86736bb7223f49e2ba5fe419d01d2499.png


3.2 基本使用


DataFrame 构造方法如下:


pandas.DataFrame( data, index, columns, dtype, copy)


参数的含义和 Series 类似,column 表示列标签,默认为 RangeIndex (0, 1, 2, …, n) 。

DataFrame 简单示例代码和输出结果如下:

import pandas as pd
# 数据
data = [['apple',10],['banana',12],['orange',31]]
# 指定列索引
df = pd.DataFrame(data,columns=['type','number'],dtype=float)
print(df)


  • 使用 ndarrays 创建-键是列索引,值是数据
import pandas as pd
# ndarrays 数据
data = {'type':['apple','banana','orange'],'age':[10,12,31]}
# 创建dataframe对象
df = pd.DataFrame(data)
print(df)


e7759e3585394f8a973bdb5e9a36821d.png

  • 字典列表创建-一个字典是一行
# 字典列表
data1 = [{'a':1,'b':2},{'a':10,'b':20,'c':30}]
df = pd.DataFrame(data1)
print(df)



65057f42de6f48cfbda83a79ce9c5a64.png



  • loc 属性返回行
data = {
    'calories': [420, 380, 390],
    'duration': [50, 40, 45]
}
df = pd.DataFrame(data)
# 返回第一行
print(df.loc[1])
print('*'*20)
# 切片,返回前2行
print(df.loc[:1])



d3db6fbdd6034bee8d07029c1797f46c.png



四、Pandas-CSV


4.1 CSV简介


CSV(Comma-Separated Values, 逗号分隔值 ,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本)。


4.2 读取CSV文件


在 Pandas 中用于读取文本的函数有两个,分别是: read_csv() 和 read_table() ,它们能够 自动地将表格数据转换为 DataFrame 对象 。其中 read_csv 的语法格式如下:


pandas.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer',names=None, index_col=None, usecols=None)

这里要用到一个CSV文件(nba.csv),放在文末扫码可以领取。

read_csv() 函数简单示例代码和输出结果如下:

import pandas as pd
df = pd.read_csv('nba.csv')
print(df)


966f845fe79c4760b20f617f45f5c6d8.png

  • 返回数据

打印 dataframe 对象默认返回数据的前后5行,中间部分以点代替,如上图所示。要返回全部数据需要使用 to_string()函数。

  • 存储 csv 文件

使用 to_csv() 方法将 dataframe 对象存储为 csv 文件。

import pandas as pd
df = pd.read_csv('nba.csv')
print(df.head(3))
# 存储前三行数据到 test.csv 文件
df.to_csv('test.csv')


4.3 数据处理


  • head() 函数

head(n) 函数用于读取前 n 行,如果不填写 n ,默认返回5行。

print(df.head(3))
  • tail() 函数

tail(n) 函数用于读取后 n 行,如果不填写 n ,默认返回5行。

print(df.tail(3))
  • info() 函数

info() 函数用于返回表格的一些基本信息。

print(df.info())


a60a612ca9ce4090b68bb65d165d4fc5.png


五、数据清洗


数据清洗是对一些没有用的数据进行处理的过程。

很多数据集存在 数据缺失、数据格式错误、错误数据或重复数据 的情况,如果要使数据分析更加准确,就需要对这些没有用的数据进行处理。

我们可以利用 Pandas包来进行数据清洗。


5.1 数据清洗的方法


异常类型 处理方法
重复值 一般采取删除法来处理,但有些重复值不能删除,例如订单明细数据或交易明细数据等。
缺失值 可以采取直接删除法,替换法或者插值法,常用的替换法有均值替换、前向、后向替换和常数替换
异常值 偏离正常范围的值,不是错误值,异常值往往采取盖帽法或者数据离散化
错误值 指的是数据格式错误,往往采取转换为相同格式的数据


5.2 清洗案例


  • 清洗空值


如果我们要删除包含空字段的行,可以使用 dropna() 方法 ,语法格式如下:

DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)


参数 说明
axis 默认为 0,表示逢空值剔除整行,如果设置参数 axis=1 表示逢空值去掉整列。
how 默认为 ‘any’ 如果一行(或一列)里任何一个数据有出现 NA 就去掉整行,如果设置 how=‘all’ 一行(或列)都是 NA 才去掉这整行。
thresh 设置需要多少非空值的数据才能保留。
subset 想要检查的列。如果是多个列,可以使用列名的 list 作为参数
inplace 如果设置 True,将计算得到的值直接覆盖之前的值并返回 None,修改的是源数据

使用 isnull() 函数 判断各个单元格是否为空。

import pandas as pd
# 读取csv文件
df = pd.read_csv('../csv/nba.csv')
temp = df.head(6)
# 判断各个单元格是否为空
print(temp['College'].isnull())



6d1e7751d7fc40ae8663d171e1901544.png

Pandas 将 NAN 当作空值处理,我们也可以再定义空值

# 定义当作空值处理的数据
missing_data = ['n/a','na','--']
# 读取csv文件
df = pd.read_csv('../csv/nba.csv',na_values=missing_data)

我们可以用 fillna() 函数来替换一些空值。

# 替换所有
df2 = df.fillna(123456)
# 替换某一列
df2 = df['College'].fillna(12345)

Pandas使用 mean()、median() 和 mode() 方法计算列的均值(所有值加起来的平均值)、中位数值(排序后排在中间的数)和众数(出现频率最高的数)

# 临时dataframe对象
temp = df.head(6)
# 计算平均值
mean = temp['Age'].mean()
# 中位数
median = temp['Age'].median()
# 众数
mode = temp['Age'].mode()
# 使用中位数替换空值
print(temp['College'].fillna(mean))


  • 清洗格式错误数据

数据格式错误的单元格会使数据分析变得困难,甚至不可能。我们可以通过包含空单元格的行,或者将列中的所有单元格转换为相同格式的数据。

to_datetime() 是格式化日期的函数。

  • 清洗异常数据

我们可以对异常的数据进行替换或者移除。

import pandas as pd
# 异常数据1823
person = {
    'name': ['xiaoguo', 'xiaojiang'],
    'age': [20, 1823]
}
df = pd.DataFrame(person)
# 修改异常数据
df.loc(1)['age'] = 18
print(df)


  • 清洗重复数据

如果我们要清洗重复数据,可以使用 duplicated() 函数 判断和 drop_duplicates() 函数 删除。

# 判断是否重复
sign = df.duplicated('age')
# 删除重复行
temp = df.drop_duplicates('age')


总结


以上就是本次要分享给大家的内容啦!本文简单介绍了 Pandas中的两种数据类型——Series和DataFrame,以及 csv 文件的读取,利用Pandas进行数据清洗。


😊 初心致力于打造软件开发和大数据领域最通俗易懂的文章,希望能帮助到你。

🍺 当你真正喜欢做一件事时,自律就会成为你的本能。

😍 本文由初心原创,首发于CSDN博客,喜欢的话记得点赞收藏哦!我们下期再见!

相关文章
|
16天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
45 0
|
11天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
26 2
|
17天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
30 2
|
8天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
8天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
1月前
|
数据可视化 数据挖掘 大数据
Python 数据分析入门:从零开始处理数据集
Python 数据分析入门:从零开始处理数据集
|
1月前
|
机器学习/深度学习 数据采集 算法
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
【10月更文挑战第5天】随着数据科学和机器学习领域的快速发展,处理大规模数据集的能力变得至关重要。Python凭借其强大的生态系统,尤其是NumPy、Pandas和SciPy等库的支持,在这个领域占据了重要地位。本文将深入探讨这些库如何帮助科学家和工程师高效地进行数据分析,并通过实际案例来展示它们的一些高级应用。
49 0
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
|
1月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析:从入门到实践
使用Python进行数据分析:从入门到实践
50 2
|
22天前
|
数据采集 机器学习/深度学习 数据可视化
深入浅出:用Python进行数据分析的入门指南
【10月更文挑战第21天】 在信息爆炸的时代,掌握数据分析技能就像拥有一把钥匙,能够解锁隐藏在庞大数据集背后的秘密。本文将引导你通过Python语言,学习如何从零开始进行数据分析。我们将一起探索数据的收集、处理、分析和可视化等步骤,并最终学会如何利用数据讲故事。无论你是编程新手还是希望提升数据分析能力的专业人士,这篇文章都将为你提供一条清晰的学习路径。
|
1月前
|
数据挖掘 索引 Python
Python数据分析篇--NumPy--入门
Python数据分析篇--NumPy--入门
33 0