m基于遗传优化的凸松弛算法完成从二维人体图像中提取三维姿态的matlab仿真

本文涉及的产品
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频资源包5000点
简介: m基于遗传优化的凸松弛算法完成从二维人体图像中提取三维姿态的matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

586574394bcc43316889170065b6d14f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
609681fb7997b8453b6197398f9ed6a3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
f15b862e40b510526b6e8e6c1bec3b27_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
三维姿态估计是计算机视觉领域中一个非常重要的问题,它在许多应用中都具有重要的作用,如人机交互、姿态识别、动作捕捉等。在过去的几年中,随着深度学习技术的发展,基于深度学习的方法取得了很大的进展,但是这些方法仍然存在许多问题,如对于遮挡和复杂姿态的处理等。
二维人体图像到三维姿态的转换一直是计算机视觉领域中的难题。在本文中,我们将介绍一种新的方法,该方法使用基于凸松弛的方法来估计三维姿态。凸松弛是一种数学优化方法,它可以用来解决许多实际问题,包括姿态估计。我们还将使用遗传优化算法来进一步提高凸松弛算法的性能。
凸松弛是一种数学优化方法,它可以用来解决许多实际问题,包括姿态估计。在本文中,我们将使用凸松弛算法来估计三维姿态。凸松弛算法使用了一种强大的数学工具,称为凸优化,该工具可以在不知道准确模型参数的情况下,通过最小化目标函数来估计模型参数。凸优化是一种非常有效的优化方法,因为它可以保证全局最优解。
基于遗传优化的凸松弛算法,凸松弛算法是一种非常强大的数学工具,但是在实际应用中,它仍然存在许多问题,如局部最优解和收敛速度慢等。为了解决这些问题,我们将引入遗传优化算法来进一步提高凸松弛算法的性能。
遗传优化算法是一种基于生物学进化理论的优化算法,它通过模拟自然选择和遗传变异来搜索最优解。在本文中,我们将使用遗传优化算法来搜索凸松弛算法的最优解。具体来说,我们将使用遗传优化算法来搜索凸松弛算法的参数,以使目标函数最小化。使用遗传优化算法可以加快凸松弛算法的收敛速度,并且可以更好地避免局部最优解。提出的基于遗传优化的凸松弛算法的性能。我们将我们的方法与一些最新的三维姿态估计方法进行比较,包括基于深度学习的方法和基于传统优化方法的方法。

   遗传优化长度为L的n个二进制串bi(i=1,2,…,n)组成了遗传算法的初解群,也称为初始群体。在每个串中,每个二进制位就是个体染色体的基因。根据进化术语,对群体执行的操作有三种:

1.选择(Selection)

这是从群体中选择出较适应环境的个体。这些选中的个体用于繁殖下一代。故有时也称这一操作为再生(Reproduction)。由于在选择用于繁殖下一代的个体时,是根据个体对环境的适应度而决定其繁殖量的,故而有时也称为非均匀再生(differential reproduction)。

2.交叉(Crossover)

这是在选中用于繁殖下一代的个体中,对两个不同的个体的相同位置的基因进行交换,从而产生新的个体。

3.变异(Mutation)

   这是在选中的个体中,对个体中的某些基因执行异向转化。在串bi中,如果某位基因为1,产生变异时就是把它变成0;反亦反之。

4.全局最优收敛(Convergence to the global optimum)

    当最优个体的适应度达到给定的阀值,或者最优个体的适应度和群体适应度不再上升时,则算法的迭代过程收敛、算法结束。否则,用经过选择、交叉、变异所得到的新一代群体取代上一代群体,并返回到第2步即选择操作处继续循环执行。

3.MATLAB核心程序

clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')

%初始spread 
mu     = 1;

%根据遗传算法进行参数的拟合
MAXGEN = 20;
NIND   = 50;
Chrom  = crtbp(NIND,1*10);
%14个变量的区间
Areas  = [0.5;
          1.5];

FieldD = [rep([10],[1,1]);Areas;rep([0;0;0;0],[1,1])];

LR     = zeros(NIND,1);
MU2    = zeros(MAXGEN,1);
gen              = 0;

for a=1:1:NIND 
    a
    LR(a)    = mu;       
    %计算对应的目标值
    errs     = func_obj(LR(a));
    E        = errs;
    J(a,1)   = E;
end

Objv  = (J+eps);
gen   = 0; 

while gen < MAXGEN;   
      gen

      P1 = 0.9;
      P2 = 1-P1;

      FitnV=ranking(Objv);    

      Selch=select('sus',Chrom,FitnV);    
      Selch=recombin('xovsp', Selch,P1);   
      Selch=mut( Selch,P2);   
      phen1=bs2rv(Selch,FieldD);   
      for a=1:1:NIND  
          if  gen == 1
              LR(a)    = mu;               
          else
              LR(a)    = phen1(a,1);      
          end

          %计算对应的目标值
          errs    = func_obj(LR(a));
          E       = errs;
          JJ(a,1) = E;
      end 
      Objvsel=(JJ+eps);    
      [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);   
      gen=gen+1; 

      %保存参数收敛过程和误差收敛过程以及函数值拟合结论
      MU2(gen)   = mean(LR);
      Error(gen) = mean(JJ);
      deltaf     = Error(gen);
end
相关文章
|
7天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
6天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
5天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
20天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
156 80
|
8天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
8天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
13天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
16天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
12天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
17天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。

热门文章

最新文章