【栈和队列OJ题】有效的括号&&用队列实现栈&&用栈实现队列&&设计循环队列(下)

简介: 【栈和队列OJ题】有效的括号&&用队列实现栈&&用栈实现队列&&设计循环队列(下)

4.设计循环队列

描述:

设计你的循环队列实现。 循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。


循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普通队列里,一旦一个队列满了,我们就不能插入下一个元素,即使在队列前面仍有空间。但是使用循环队列,我们能使用这些空间去存储新的值。


你的实现应该支持如下操作:

MyCircularQueue(k): 构造器,设置队列长度为 k 。

Front: 从队首获取元素。如果队列为空,返回 -1 。

Rear: 获取队尾元素。如果队列为空,返回 -1 。

enQueue(value): 向循环队列插入一个元素。如果成功插入则返回真。

deQueue(): 从循环队列中删除一个元素。如果成功删除则返回真。

isEmpty(): 检查循环队列是否为空。

isFull(): 检查循环队列是否已满。

示例:

MyCircularQueue circularQueue = new MyCircularQueue(3); // 设置长度为 3

circularQueue.enQueue(1); // 返回 true

circularQueue.enQueue(2); // 返回 true

circularQueue.enQueue(3); // 返回 true

circularQueue.enQueue(4); // 返回 false,队列已满

circularQueue.Rear(); // 返回 3

circularQueue.isFull(); // 返回 true

circularQueue.deQueue(); // 返回 true

circularQueue.enQueue(4); // 返回 true

circularQueue.Rear(); // 返回 4


提示:

所有的值都在 0 至 1000 的范围内;

操作数将在 1 至 1000 的范围内;

请不要使用内置的队列库。

4.1思路:

在本题中,循环队列的大小是固定的,可重复利用之前的空间。接下来,就开始分析结构。

结构分析:

题目给定循环队列的大小为 k ,不论数组和链表,构建的大小为 k ,可行吗?

给定 front 和 rear 为0,front 标识队头,rear 标识队尾的下一个数据的位置,每当 入数据, rear++,向后走。

由于是循环队列,空间可以重复利用,当放置完最后一个数据后,rear需要回到头部。

那么问题来了,如何判空和判满 ?无论队列空或满,front 和 rear 都在一个位置。

e4bfb59b3e204c8596ba5066befdd22a.png1.解决方法一:

结构设计时,多加一个 size ,标识队列数据个数。

size=0为空,size=k就是满

2.解决方法二 :

创建队列时,额外创建一个空间。

870322d63f0342f6a780bf4a417e83d4.png

缺陷:单链表取尾不好取

数组:

对于数组,那么我们就开上 k + 1 个空间。

frontrear 分别标识队头和队尾。

1ba28587373c4f75b4a7120feb2962a2.png

每当入数据,rear 向后走一步,front 不动;每当出数据,front 向后走一步,rear 不动。当走过下标 k 处后,front 和 rear 的位置需要加以调整。比如,rear 下一步应该走到第一个空间:下标0位置。

a90de715e78d4362a01efec6f410cdb2.png队列空 时,front == rear。


队列满 时, rear 的下一个位置是 front 。平常只需要看 rear + 1 是否等于 front 即可。但是 放置的元素在 k 下标处时,此刻的 rear 需要特殊处理,rear 的位置会移动到 0 下标。经公式推导:(rear + 1) % (k + 1) == front 时,队列满,平常状况也不会受到公式影响。

d5020ba2a2bc4c96b649b525934e919a.png入数据时,在 rear 位置入数据,然后 rear 向后移动,同样的,当入数据时到 k 下标的空间后,rear 需要特殊处理:rear %= k + 1

48e204b8793e4490bda3c0315007a18d.png出数据时,将 front 向后移动,当出数据到 k 下标的空间后,front 需要特殊处理:front %= k + 1

取队头数据时,不为空取 front 处元素即可。

dec1005c5019415faa2287c869d0041b.png

取队尾数据时,需要取rear 前一个位置,当队列非空时且 rear 不在 0下标时,直接取前一个;当队列非空且 rear 在 0 位置时,需要推导一下公式,前一个数据的下标为:(rear-1 + k+1) % (k + 1),两种情况都适用。

5f47437b52df4357b5649b2ff21bfd7a.png

typedef struct 
{
    int* a;//数组模拟环形队列
    int front;队头
    int rear;//队尾
    int k;//队列可存储的有效数据总数
} MyCircularQueue;
MyCircularQueue* myCircularQueueCreate(int k) 
{
    MyCircularQueue* obj = (MyCircularQueue*)malloc(sizeof(MyCircularQueue));
    //申请一个环形队列
    obj->a = (int*)malloc(sizeof(int) * (k + 1));//开K=1层//开辟队列空间
    obj->front = obj->rear = 0;
    //初始时,队头和队尾均为0
    obj->k = k;//设置队列可存储的有效数据个数
    return obj;
}
bool myCircularQueueIsEmpty(MyCircularQueue* obj) 
{
    return obj->front == obj->rear;
    //当front和rear指向同一位置时,队列为空
}
bool myCircularQueueIsFull(MyCircularQueue* obj) 
{
    return (obj->rear + 1) % (obj->k + 1) == obj->front;
}
bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) 
{
    if (myCircularQueueIsFull(obj))
    //队列已满,不能再插入数据
        return false;
    //插入数据
    obj->a[obj->rear++] = value;//放数据
    obj->rear %= (obj->k + 1);
    return true;
}
bool myCircularQueueDeQueue(MyCircularQueue* obj) 
{
    if (myCircularQueueIsEmpty(obj))
    //当队列为空时,无法再删除数据
        return false;
    //删除数据
    obj->front++;
    obj->front %= (obj->k + 1);
    return true;
}
int myCircularQueueFront(MyCircularQueue* obj) 
{
    if (myCircularQueueIsEmpty(obj))
    //当队列为空时,无数据可返回
        return -1;
    else
    //返回队头指向的数据
        return obj->a[obj->front];
}
int myCircularQueueRear(MyCircularQueue* obj) 
{
    if (myCircularQueueIsEmpty(obj))
    //当队列为空时,无数据可返回
        return -1;
    else
    //返回rear指向位置的数据
        return obj->a[(obj->rear-1 + obj->k+1) % (obj->k + 1)];
    //可读性更强的方法
    //int x=obj->rear==0?obj->k:obj->rear-1;
    //rear=0 返回k的位置 反之返回rear-1
    //return obj->a[x];
}
void myCircularQueueFree(MyCircularQueue* obj) 
{
    free(obj->a);//先释放动态开辟的数组
    free(obj);//再释放动态开辟的结构体
}

链表:

其实对于循环队列而言,使用链表来构建是最清晰的。

注意 当构建链表时,构建的是 k + 1 个节点的 单向循环链表

front 和 rear 分别标识 队头 和 队尾。

队列空,front == rear 。

队列满,rear 的下一个节点就是 front 节点,rear->next == front。

入数据时,比数组设计简单很多,就直接让rear 迭代到下一个节点就可以。

出数据时,队列非空时,直接让front 迭代到下一个节点。

取队头元素时,如果非空,直接取 front 节点处的值。

取队尾元素时,如果非空,则从头开始迭代到rear 的前一个节点,取出元素。

需要注意 销毁的时候,由于链表不带头,所以销毁的时候可以从第二个节点开始迭代销毁,然后销毁第一个节点,最后销毁队列本身。这里比较细节,过会可以看一下代码。

typedef struct  CQNode
{
    struct CQNode* next;
    int data;
}CQNode;
typedef struct 
{
    CQNode* front;
    CQNode* rear;
} MyCircularQueue;
bool myCircularQueueIsEmpty(MyCircularQueue* obj);
bool myCircularQueueIsFull(MyCircularQueue* obj); 
// 创建节点
CQNode* BuyNode()
{
    CQNode* newnode = (CQNode*)malloc(sizeof(CQNode));
    newnode->next = NULL;
    return newnode;
}
MyCircularQueue* myCircularQueueCreate(int k) 
{
    // 构建长度 k + 1 的单向循环链表
    // 多开一个空间,防止边界问题
    CQNode* head = NULL, *tail = NULL;
    int len = k + 1;
    while (len--)
    {
        CQNode* newnode = BuyNode();
        if (tail == NULL)
        {
            head = tail = newnode;
        }
        else
        {
            tail->next = newnode;
            tail = newnode;
        }
        tail->next = head;
    }
    MyCircularQueue* cq = (MyCircularQueue*)malloc(sizeof(MyCircularQueue));
    cq->front = cq->rear = head;
    return cq;
}
bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) 
{
    if (myCircularQueueIsFull(obj))
        return false;
    // 直接插入在rear位置,rear后移
    obj->rear->data = value;
    obj->rear = obj->rear->next;
    return true;
}
bool myCircularQueueDeQueue(MyCircularQueue* obj) 
{
    if (myCircularQueueIsEmpty(obj))
        return false;
    obj->front = obj->front->next;
    return true;
}
int myCircularQueueFront(MyCircularQueue* obj) 
{
    if (myCircularQueueIsEmpty(obj))
        return -1;
    return obj->front->data;
}
int myCircularQueueRear(MyCircularQueue* obj) 
{
    if (myCircularQueueIsEmpty(obj))
        return -1;
    // 取rear前一个元素
    CQNode* cur = obj->front;
    while (cur->next != obj->rear)
    {
        cur = cur->next;
    }
    return cur->data;
}
bool myCircularQueueIsEmpty(MyCircularQueue* obj) 
{
    return obj->front == obj->rear;
}
bool myCircularQueueIsFull(MyCircularQueue* obj) 
{
    return obj->rear->next == obj->front;
}
void myCircularQueueFree(MyCircularQueue* obj) 
{
    // 销毁需要逐个销毁
    CQNode* cur = obj->front->next;
    // 从第二个节点开始,防止找不到头
    while (cur != obj->front)
    {
        CQNode* next = cur->next;
        free(cur);
        cur = next;
    }
    // 销毁
    free(cur);
    free(obj);
}
/**
 * Your MyCircularQueue struct will be instantiated and called as such:
 * MyCircularQueue* obj = myCircularQueueCreate(k);
 * bool param_1 = myCircularQueueEnQueue(obj, value);
 * bool param_2 = myCircularQueueDeQueue(obj);
 * int param_3 = myCircularQueueFront(obj);
 * int param_4 = myCircularQueueRear(obj);
 * bool param_5 = myCircularQueueIsEmpty(obj);
 * bool param_6 = myCircularQueueIsFull(obj);
 * myCircularQueueFree(obj);
*/

5.总结:

今天我们分析并完成栈和队列相关OJ题,通过分析明白了原理,愿这篇博客能帮助大家理解这些OJ题,因为栈和队列相关OJ题是还是有一些难度和细节需要注意。希望我的文章和讲解能对大家的学习提供一些帮助。之后会继续更新二叉树的相关知识点。

当然,本文仍有许多不足之处,欢迎各位小伙伴们随时私信交流、批评指正!我们下期见~

c3ad96b16d2e46119dd2b9357f295e3f.jpg

相关文章
|
7月前
|
前端开发 Java
java实现队列数据结构代码详解
本文详细解析了Java中队列数据结构的实现,包括队列的基本概念、应用场景及代码实现。队列是一种遵循“先进先出”原则的线性结构,支持在队尾插入和队头删除操作。文章介绍了顺序队列与链式队列,并重点分析了循环队列的实现方式以解决溢出问题。通过具体代码示例(如`enqueue`入队和`dequeue`出队),展示了队列的操作逻辑,帮助读者深入理解其工作机制。
208 1
|
5月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
96 0
栈区的非法访问导致的死循环(x64)
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。
|
9月前
|
算法 调度 C++
STL——栈和队列和优先队列
通过以上对栈、队列和优先队列的详细解释和示例,希望能帮助读者更好地理解和应用这些重要的数据结构。
208 11
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
987 9
|
12月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
257 59
|
10月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
436 77
|
9月前
|
DataX
☀☀☀☀☀☀☀有关栈和队列应用的oj题讲解☼☼☼☼☼☼☼
### 简介 本文介绍了三种数据结构的实现方法:用两个队列实现栈、用两个栈实现队列以及设计循环队列。具体思路如下: 1. **用两个队列实现栈**: - 插入元素时,选择非空队列进行插入。 - 移除栈顶元素时,将非空队列中的元素依次转移到另一个队列,直到只剩下一个元素,然后弹出该元素。 - 判空条件为两个队列均为空。 2. **用两个栈实现队列**: - 插入元素时,选择非空栈进行插入。 - 移除队首元素时,将非空栈中的元素依次转移到另一个栈,再将这些元素重新放回原栈以保持顺序。 - 判空条件为两个栈均为空。
|
10月前
|
存储 C++ 索引
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
【数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】初始化队列、销毁队列、判断队列是否为空、进队列、出队列等。本关任务:编写一个程序实现环形队列的基本运算。(6)出队列序列:yzopq2*(5)依次进队列元素:opq2*(6)出队列序列:bcdef。(2)依次进队列元素:abc。(5)依次进队列元素:def。(2)依次进队列元素:xyz。开始你的任务吧,祝你成功!(4)出队一个元素a。(4)出队一个元素x。
336 13
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
|
10月前
|
存储 C语言 C++
【C++数据结构——栈与队列】链栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现链栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储整数,最大
196 9

热门文章

最新文章