缓存数据一致性探究

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 缓存是一种较低成本提升系统性能的方式,自它面世第一天起就备受广大开发者的喜爱。然而正如《人月神话》中的那句经典的“没有银弹”中所说,软件工程的设计没有银弹。就像每一次发布上线修复问题的同时,也极易引入新的问题,自缓存诞生的第一天起,缓存与数据库的数据一致性问题就深深困扰着开发者们。关键词:原子性、事务性、数据一致性、双写一致性

缓存的查询:

先查询缓存,如果查询失败,那么去查询DB,之后重建缓存,基本上不存在异议。

缓存的更新:

先更新DB还是先更新缓存?是更新缓存还是删除缓存?在常规情况下,怎么操作都可以,但一旦面对高并发场景,就值得细细思量了。

1、先更新数据库再更新缓存

线程A:更新数据库(第1s)——>  更新缓存(第10s)

线程B:更新数据库 (第3s)——> 更新缓存(第5s)

并发场景下,这样的情况是很容易出现的,每个线程的操作先后顺序不同,这样就导致请求B的缓存值被请求A给覆盖了,数据库中是线程B的新值,缓存中是线程A的旧值,并且会一直这么脏下去知道缓存失效(如果你设置了过期时间的话)。

2、先更新缓存再更新数据库

线程A:更新缓存(第1s)——> 更新数据库(第10s)

线程B:更新缓存(第3s)——>  更新数据库(第5s)

和前面一种情况相反,缓存中是线程B的新值,而数据库中是线程A的旧值

前两种方式之所以会在并发场景下出现异常,本质上是因为更新缓存和更新数据库是两个操作,我们没有办法控制并发场景下两个操作之间先后顺序,也就是先开始操作的线程先完成自己的工作。

如果把它化简,更新时只更新数据库,同时删除缓存。等待下一次查询时命中不到缓存,再去重建缓存,是不是就解决了这个问题?

基于此,后面的两种方案应运而生。

3、先删除缓存再更新数据库

通过这种方式,我们很惊喜地发现,前面困扰我们的并发写场景的问题确实被解决了!两个线程都只修改数据库,不管谁先,数据库以之后修改的线程为准。

但这个时候,我们来思考另一个场景:两个并发操作,一个是更新操作,另一个是查询操作,更新操作删除缓存后,查询操作没有命中缓存,先把老数据读出来后放到缓存中,然后更新操作更新了数据库。于是,在缓存中的数据还是老的数据,导致缓存中的数据是脏的。很显然,这种状况也不是我们想要的。

延时双删

在这种方案下,拓展出了延时双删的解决手段。

  1. 删除缓存
  2. 更新数据库
  3. 睡眠一段时间
  4. 再次删除缓存

加了个睡眠时间,主要是为了确保请求 A 在睡眠的时候,请求 B 能够在这这一段时间完成「从数据库读取数据,再把缺失的缓存写入缓存」的操作,然后请求 A 睡眠完,再删除缓存。

所以,请求 A 的睡眠时间就需要大于请求 B 「从数据库读取数据 + 写入缓存」的时间。

但是具体睡眠多久其实是个玄学,很难评估出来,所以这个方案也只是尽可能保证一致性而已,极端情况下,依然也会出现缓存不一致的现象。

因此,还是不太建议这种方案。

4、先更新数据库再删除缓存(cache aside)

这种方式,再方案3的基础上,又将二者的顺序进行了调换。我们再把前面的场景在这种方案下进行验证:一个是查询操作,一个是更新操作的并发,我们先更新了数据库中的数据,此时,缓存依然有效,所以,并发的查询操作拿的是没有更新的数据,但是,更新操作马上让缓存的失效了,后续的查询操作再把数据从数据库中拉出来。而不会方案3一样,后续的查询操作一直在取老的数据。

而这,也正是缓存使用的标准的design pattern,也就是cache aside。包括Facebook的论文《Scaling Memcache at Facebook》也使用了这个策略。

那么,是否这种方案就是万无一失的完美策略呢?其实也并不然,再来看看这种场景:一个是读操作,但是没有命中缓存,然后就到数据库中取数据,此时来了一个写操作,写完数据库后,让缓存失效,然后,之前的那个读操作再把老的数据放进去,所以,会造成脏数据。

但是这个case理论上会出现,不过,实际上出现的概率可能非常低,因为这个条件需要发生在读缓存时缓存失效,而且并发着有一个写操作。而实际上数据库的写操作会比读操作慢得多,而且还要锁表,而读操作必需在写操作前进入数据库操作,而又要晚于写操作更新缓存,所有的这些条件都具备的概率基本并不大。

所以,要么通过2PC或是Paxos协议保证一致性,要么就是拼命的降低并发时脏数据的概率,而Facebook使用了这个降低概率的玩法,因为2PC太慢,而Paxos太复杂。当然,最好还是为缓存设置上过期时间,这样,即使数据出现了不一致,也能在一段时间之后失效,更新上一致的数据。

操作失败

面虽然列举了不少较为复杂的并发场景,但实际上还是理想情况:即,对数据库和缓存的操作都是成功的。然而在实际生产中,由于网络抖动、服务下线等等原因,操作是有可能失败的。

举例说明:应用要把数据 X 的值从 1 更新为 2,先成功更新了数据库,然后在 Redis 缓存中删除 X 的缓存,但是这个操作却失败了,这个时候数据库中 X 的新值为 2,Redis 中的 X 的缓存值为 1,出现了数据库和缓存数据不一致的问题。

那么,后续有访问数据 X 的请求,会先在 Redis 中查询,因为缓存并没有 诶删除,所以会缓存命中,但是读到的却是旧值 1。

其实不管是先操作数据库,还是先操作缓存,只要第二个操作失败都会出现数据一致的问题。

问题原因知道了,该怎么解决呢?有两种方法:

  • 重试机制。
  • 订阅 MySQL binlog,再操作缓存。

重试机制

我们可以引入消息队列,将第二个操作(删除缓存)要操作的数据加入到消息队列,由消费者来操作数据。

  • 如果应用删除缓存失败,可以从消息队列中重新读取数据,然后再次删除缓存,这个就是重试机制。当然,如果重试超过的一定次数,还是没有成功,我们就需要向业务层发送报错信息了。
  • 如果删除缓存成功,就要把数据从消息队列中移除,避免重复操作,否则就继续重试。

举个例子,来说明重试机制的过程。

订阅 MySQL binlog,再操作缓存

先更新数据库,再删缓存」的策略的第一步是更新数据库,那么更新数据库成功,就会产生一条变更日志,记录在 binlog 里。

于是我们就可以通过订阅 binlog 日志,拿到具体要操作的数据,然后再执行缓存删除,阿里巴巴开源的 Canal 中间件就是基于这个实现的。

Canal 模拟 MySQL 主从复制的交互协议,把自己伪装成一个 MySQL 的从节点,向 MySQL 主节点发送 dump 请求,MySQL 收到请求后,就会开始推送 Binlog 给 Canal,Canal 解析 Binlog 字节流之后,转换为便于读取的结构化数据,供下游程序订阅使用。

下图是 Canal 的工作原理:

以,如果要想保证「先更新数据库,再删缓存」策略第二个操作能执行成功,我们可以使用「消息队列来重试缓存的删除」,或者「订阅 MySQL binlog 再操作缓存」,这两种方法有一个共同的特点,都是采用异步操作缓存。

总结

1、cache aside并非万能

虽然说catch aside可以被称之为缓存使用的最佳实践,但与此同时,它引入了缓存的命中率降低的问题,(每次都删除缓存自然导致更不容易命中了),因此它更适用于对缓存命中率要求并不是特别高的场景。如果要求较高的缓存命中率,依然需要采用更新数据库后同时更新缓存的方案。

2、缓存数据不一致的解决方案

前面已经说了,在更新数据库后同时更新缓存,会在并发写的场景下出现数据不一致,那我们该怎么规避呢?方案也有两种。

引入分布式锁,

在更新缓存之前尝试获取锁,如果已经被占用就先阻塞住线程,等待其他线程释放锁后再尝试更新。但这会影响并发操作的性能。

设置较短缓存时间

设置较短的缓存过期时间能够使得数据不一致问题存在的时间也比较长,对业务的影响相对较小。但是于此同时,其实这也使得缓存命中率降低,又回到了前面的问题里...

所以,综上所述,没有永恒的最佳方案,只有不同业务场景下的方案取舍。

行文至此,不由得默念一声:“There is no silver bullet!”,并再次为《人月神话》作者的精准洞见而感叹。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
2月前
|
存储 缓存 数据库
解决缓存与数据库的数据一致性问题的终极指南
解决缓存与数据库的数据一致性问题的终极指南
204 63
|
7月前
|
消息中间件 缓存 数据库
如何保证缓存与数据库的数据一致性?
如何保证缓存与数据库的数据一致性?
107 5
|
3月前
|
消息中间件 canal 缓存
项目实战:一步步实现高效缓存与数据库的数据一致性方案
Hello,大家好!我是热爱分享技术的小米。今天探讨在个人项目中如何保证数据一致性,尤其是在缓存与数据库同步时面临的挑战。文中介绍了常见的CacheAside模式,以及结合消息队列和请求串行化的方法,确保数据一致性。通过不同方案的分析,希望能给大家带来启发。如果你对这些技术感兴趣,欢迎关注我的微信公众号“软件求生”,获取更多技术干货!
215 6
项目实战:一步步实现高效缓存与数据库的数据一致性方案
|
canal 缓存 NoSQL
面试官,如何保证缓存与数据库的数据一致性
面试官,如何保证缓存与数据库的数据一致性
|
4天前
|
存储 消息中间件 设计模式
缓存数据一致性策略如何分类?
数据库与缓存数据一致性问题的解决方案主要分为强一致性和最终一致性。强一致性通过分布式锁或分布式事务确保每次写入后数据立即一致,适合高要求场景,但性能开销大。最终一致性允许短暂延迟,常用方案包括Cache-Aside(先更新DB再删缓存)、Read/Write-Through(读写穿透)和Write-Behind(异步写入)。延时双删策略通过两次删除缓存确保数据最终一致,适用于复杂业务场景。选择方案需根据系统复杂度和一致性要求权衡。
19 0
|
2月前
|
SQL 缓存 Java
JVM知识体系学习三:class文件初始化过程、硬件层数据一致性(硬件层)、缓存行、指令乱序执行问题、如何保证不乱序(volatile等)
这篇文章详细介绍了JVM中类文件的初始化过程、硬件层面的数据一致性问题、缓存行和伪共享、指令乱序执行问题,以及如何通过`volatile`关键字和`synchronized`关键字来保证数据的有序性和可见性。
37 3
|
3月前
|
缓存 NoSQL Java
谷粒商城笔记+踩坑(12)——缓存与分布式锁,Redisson+缓存数据一致性
缓存与分布式锁、Redisson分布式锁、缓存数据一致性【必须满足最终一致性】
165 14
谷粒商城笔记+踩坑(12)——缓存与分布式锁,Redisson+缓存数据一致性
|
3月前
|
消息中间件 缓存 NoSQL
15)如何保证缓存和数据库之间的数据一致性
15)如何保证缓存和数据库之间的数据一致性
72 1
|
4月前
|
缓存 NoSQL 关系型数据库
(八)漫谈分布式之缓存篇:唠唠老生常谈的MySQL与Redis数据一致性问题!
本文来聊一个跟实际工作挂钩的老生常谈的问题:分布式系统中的缓存一致性。
171 11
|
4月前
|
缓存 监控 架构师
缓存数据一致性 - 架构师峰会演讲实录
缓存数据一致性 - 架构师峰会演讲实录