Region Proposal Network (RPN) 架构详解

简介: Region Proposal Network (RPN) 架构详解

动动发财的小手,点个赞吧!

简介

如果您正在阅读这篇文章,那么我假设您一定听说过用于目标检测的 RCNN 系列,如果是的话,那么您一定遇到过 RPN,即区域提议网络。如果您不了解 RCNN 系列,那么我强烈建议您在深入研究 RPN 之前单击此处阅读这篇文章。

因此我们知道,在目标检测算法中,目标是生成候选框,可能包含我们目标的框,这些框将通过边界框回归方法进行定位,并由分类器分类到各自的类别。

在早期版本的物体检测算法中,这些候选框曾经是通过传统的计算机视觉技术生成的。其中一种方法是“选择性搜索”,但这种方法的缺点是它是离线的,而且计算量很大。

这就是 RPN(区域提议网络)方法通过在非常短的时间内生成候选框和最重要的地方,这个网络可以插入任何对象检测网络,这使得它对任何对象检测模型都更有用。

RPN

CNN 从特征图学习分类的方式,RPN 也学习从特征图生成这些候选框。可以使用下图演示典型的区域提议网络

让我们逐步了解上面的框图

Step 1

因此,在第一步中,我们的输入图像通过卷积神经网络,最后一层将特征映射作为输出。

Step 2

在这一步中,一个滑动窗口运行在上一步获得的特征图上。滑动窗口的大小是 n*n(这里是 3×3)。对于每个滑动窗口,都会生成一组特定的锚点,但具有 3 种不同的纵横比(1:1、1:2、2:1)和 3 种不同的比例(128、256 和 512),如下所示。

因此,对于 3 种不同的纵横比和 3 种不同的比例,每个像素总共可能有 9 个建议。特征图大小为 WxH 的锚框总数和特征图每个位置的锚点数量 K 可以表示为 WxHxK 。

下图显示了在大小为 (600, 900) 的图像的位置 (450, 350) 处的 9 个锚点。

上图中,三种颜色代表三种尺度或尺寸:128×128、256×256、512×512。

让我们挑出棕色的盒子/锚点(上图中最里面的盒子)。三个盒子的高宽比分别为1:1、1:2和2:1。

现在我们有 9 个锚框用于特征图的每个位置。但是可能有很多盒子里面没有任何物体。因此模型需要了解哪个锚框可能包含我们的对象。带有我们对象的锚框可以被归类为前景,其余的将是背景。同时模型需要学习前景框的偏移量以调整以适合对象。这将我们带到下一步。

Step 3

锚框的定位和分类是由 Bounding box Regressor layer 和 Bounding box Classifier layer 完成的。

Bounding Box Classifier 计算 Ground Truth Box 与 anchor boxes 的 IoU 分数,并以一定的概率将 Anchor box 分类为前景或背景。

Bounding box Regressor 层学习 x,y,w,h 值相对于被分类为前景的 Anchor Box 的 Ground truth Box 的偏移量(或差异),其中 (x,y) 是框的中心, w 和 h 是宽度和高度。

由于 RPN 是一个模型,并且每个模型都有一个要训练的成本函数,因此 RPN 也是如此。 RPN 的损失或成本函数可以写成

注意:- PN 不关心对象的最终类(例如猫、狗、汽车或人等)是什么。它只关心它是前景对象还是背景。

示例

让我们用一个例子来描述 RPN 的整个概念

因此,如果我们有一个大小为 600×800 的图像,在通过卷积神经网络 (CNN) 块后,该输入图像将缩小为一个 38×56 的特征图,每个特征图位置有 9 个锚框。那么我们将有 38569=1192 个提案或 Anchor Boxes 来考虑。每个锚框都有两个可能的标签(前景或背景)。如果我们将特征图的深度设置为 18(9 个锚点 x 2 个标签),我们将使每个锚点都有一个向量,该向量具有表示前景和背景的两个值(称为 logit 的法线)。如果我们将 logit 输入 softmax/logistic 回归激活函数,它将预测标签。

假设 600×800 的图像在应用 CNN 后缩小 16 倍为 39×51 的特征图。 feature map 中的每个位置都有 9 个 anchors,每个 anchor 都有两个可能的标签(background,foreground)。如果我们将特征图的深度设置为 18(9 个锚点 x 2 个标签),我们将使每个锚点都有一个向量,该向量具有表示前景和背景的两个值(通常称为 logit)。如果我们将 logit 输入 softmax/logistic 回归激活函数,它将预测标签。现在,训练数据已包含特征和标签。模型将进一步训练它。

总结

区域提议网络 (RPN) 的输出是一堆框/提议,它们将被传递给分类器和回归器以最终检查对象的出现。简而言之,RPN 预测一个锚点是背景还是前景的可能性,并对锚点进行细化。

相关文章
|
2月前
|
存储 分布式计算 Hadoop
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
57 2
|
4月前
|
Cloud Native
云原生架构之X无限延伸:跨AZ、跨Region、跨Cloud,一文让你彻底解锁!
【8月更文挑战第25天】在云原生架构中,可扩展性至关重要,它确保了应用能按需高效调整资源。本文聚焦于三种扩展策略:跨AZ、跨Region及跨云扩展。跨AZ扩展通过在同一云内部不同可用区间部署应用副本增强容错性;跨Region扩展则通过不同地理区域的应用副本部署提升全球访问性能与可靠性;而跨云扩展则利用多云环境进一步加强应用的弹性和覆盖范围。文中提供了基于AWS CloudFormation的具体实践示例,帮助读者深入理解这些扩展机制的实际应用。
153 2
|
存储 分布式计算 监控
分布式数据库HBase的基本概念和架构之基本架构的Region Server
分布式数据库HBase是一个开源的分布式数据库系统,是Apache Hadoop生态系统的重要组成部分。
418 0
|
机器学习/深度学习 算法 数据可视化
DL之NIN:Network in Network算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略
DL之NIN:Network in Network算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略
DL之NIN:Network in Network算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略
|
存储 人工智能 运维
云上技术 | 混合云管理平台多Region架构
随着现代化进程加速,企业业务规模和迭代速度也今非昔比,在已具备一定规模的中大型电力系统中,会面临着数字化升级的压力,包括复杂组织架构管理、计算资源弹性扩展、IT运维提效等需求。基于电力行业属性部署一朵专属于行业的云,这朵云既具备专有云的本地化部署的安全稳定特性,又可享有公有云按需使用云服务及按使用量付费的灵活能力。但当涉及到大规模或跨多个地域的云平台部署场景,在不同的地域、数据中心部署业务就会面临不少问题。阿里云混合云是如何通过专有云的区域(Region)逻辑来形成多Region架构+混合云多云管理平台能力,以此实现多区域部署一朵专有云,解决大型用户多数据中心部署产生的问题?
3139 0
云上技术 | 混合云管理平台多Region架构
|
12天前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
22天前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
35 3
|
1月前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####
|
12天前
|
Java 开发者 微服务
从单体到微服务:如何借助 Spring Cloud 实现架构转型
**Spring Cloud** 是一套基于 Spring 框架的**微服务架构解决方案**,它提供了一系列的工具和组件,帮助开发者快速构建分布式系统,尤其是微服务架构。
116 68
从单体到微服务:如何借助 Spring Cloud 实现架构转型
|
14天前
|
设计模式 负载均衡 监控
探索微服务架构下的API网关设计
在微服务的大潮中,API网关如同一座桥梁,连接着服务的提供者与消费者。本文将深入探讨API网关的核心功能、设计原则及实现策略,旨在为读者揭示如何构建一个高效、可靠的API网关。通过分析API网关在微服务架构中的作用和挑战,我们将了解到,一个优秀的API网关不仅要处理服务路由、负载均衡、认证授权等基础问题,还需考虑如何提升系统的可扩展性、安全性和可维护性。文章最后将提供实用的代码示例,帮助读者更好地理解和应用API网关的设计概念。
45 8