Region Proposal Network (RPN) 架构详解

简介: Region Proposal Network (RPN) 架构详解

动动发财的小手,点个赞吧!

简介

如果您正在阅读这篇文章,那么我假设您一定听说过用于目标检测的 RCNN 系列,如果是的话,那么您一定遇到过 RPN,即区域提议网络。如果您不了解 RCNN 系列,那么我强烈建议您在深入研究 RPN 之前单击此处阅读这篇文章。

因此我们知道,在目标检测算法中,目标是生成候选框,可能包含我们目标的框,这些框将通过边界框回归方法进行定位,并由分类器分类到各自的类别。

在早期版本的物体检测算法中,这些候选框曾经是通过传统的计算机视觉技术生成的。其中一种方法是“选择性搜索”,但这种方法的缺点是它是离线的,而且计算量很大。

这就是 RPN(区域提议网络)方法通过在非常短的时间内生成候选框和最重要的地方,这个网络可以插入任何对象检测网络,这使得它对任何对象检测模型都更有用。

RPN

CNN 从特征图学习分类的方式,RPN 也学习从特征图生成这些候选框。可以使用下图演示典型的区域提议网络

让我们逐步了解上面的框图

Step 1

因此,在第一步中,我们的输入图像通过卷积神经网络,最后一层将特征映射作为输出。

Step 2

在这一步中,一个滑动窗口运行在上一步获得的特征图上。滑动窗口的大小是 n*n(这里是 3×3)。对于每个滑动窗口,都会生成一组特定的锚点,但具有 3 种不同的纵横比(1:1、1:2、2:1)和 3 种不同的比例(128、256 和 512),如下所示。

因此,对于 3 种不同的纵横比和 3 种不同的比例,每个像素总共可能有 9 个建议。特征图大小为 WxH 的锚框总数和特征图每个位置的锚点数量 K 可以表示为 WxHxK 。

下图显示了在大小为 (600, 900) 的图像的位置 (450, 350) 处的 9 个锚点。

上图中,三种颜色代表三种尺度或尺寸:128×128、256×256、512×512。

让我们挑出棕色的盒子/锚点(上图中最里面的盒子)。三个盒子的高宽比分别为1:1、1:2和2:1。

现在我们有 9 个锚框用于特征图的每个位置。但是可能有很多盒子里面没有任何物体。因此模型需要了解哪个锚框可能包含我们的对象。带有我们对象的锚框可以被归类为前景,其余的将是背景。同时模型需要学习前景框的偏移量以调整以适合对象。这将我们带到下一步。

Step 3

锚框的定位和分类是由 Bounding box Regressor layer 和 Bounding box Classifier layer 完成的。

Bounding Box Classifier 计算 Ground Truth Box 与 anchor boxes 的 IoU 分数,并以一定的概率将 Anchor box 分类为前景或背景。

Bounding box Regressor 层学习 x,y,w,h 值相对于被分类为前景的 Anchor Box 的 Ground truth Box 的偏移量(或差异),其中 (x,y) 是框的中心, w 和 h 是宽度和高度。

由于 RPN 是一个模型,并且每个模型都有一个要训练的成本函数,因此 RPN 也是如此。 RPN 的损失或成本函数可以写成

注意:- PN 不关心对象的最终类(例如猫、狗、汽车或人等)是什么。它只关心它是前景对象还是背景。

示例

让我们用一个例子来描述 RPN 的整个概念

因此,如果我们有一个大小为 600×800 的图像,在通过卷积神经网络 (CNN) 块后,该输入图像将缩小为一个 38×56 的特征图,每个特征图位置有 9 个锚框。那么我们将有 38569=1192 个提案或 Anchor Boxes 来考虑。每个锚框都有两个可能的标签(前景或背景)。如果我们将特征图的深度设置为 18(9 个锚点 x 2 个标签),我们将使每个锚点都有一个向量,该向量具有表示前景和背景的两个值(称为 logit 的法线)。如果我们将 logit 输入 softmax/logistic 回归激活函数,它将预测标签。

假设 600×800 的图像在应用 CNN 后缩小 16 倍为 39×51 的特征图。 feature map 中的每个位置都有 9 个 anchors,每个 anchor 都有两个可能的标签(background,foreground)。如果我们将特征图的深度设置为 18(9 个锚点 x 2 个标签),我们将使每个锚点都有一个向量,该向量具有表示前景和背景的两个值(通常称为 logit)。如果我们将 logit 输入 softmax/logistic 回归激活函数,它将预测标签。现在,训练数据已包含特征和标签。模型将进一步训练它。

总结

区域提议网络 (RPN) 的输出是一堆框/提议,它们将被传递给分类器和回归器以最终检查对象的出现。简而言之,RPN 预测一个锚点是背景还是前景的可能性,并对锚点进行细化。

相关文章
|
存储 人工智能 运维
云上技术 | 混合云管理平台多Region架构
随着现代化进程加速,企业业务规模和迭代速度也今非昔比,在已具备一定规模的中大型电力系统中,会面临着数字化升级的压力,包括复杂组织架构管理、计算资源弹性扩展、IT运维提效等需求。基于电力行业属性部署一朵专属于行业的云,这朵云既具备专有云的本地化部署的安全稳定特性,又可享有公有云按需使用云服务及按使用量付费的灵活能力。但当涉及到大规模或跨多个地域的云平台部署场景,在不同的地域、数据中心部署业务就会面临不少问题。阿里云混合云是如何通过专有云的区域(Region)逻辑来形成多Region架构+混合云多云管理平台能力,以此实现多区域部署一朵专有云,解决大型用户多数据中心部署产生的问题?
3003 0
云上技术 | 混合云管理平台多Region架构
|
11天前
|
API 数据库 开发者
构建高效可靠的微服务架构:后端开发的新范式
【4月更文挑战第8天】 随着现代软件开发的复杂性日益增加,传统的单体应用架构面临着可扩展性、维护性和敏捷性的挑战。为了解决这些问题,微服务架构应运而生,并迅速成为后端开发领域的一股清流。本文将深入探讨微服务架构的设计原则、实施策略及其带来的优势与挑战,为后端开发者提供一种全新视角,以实现更加灵活、高效和稳定的系统构建。
18 0
|
25天前
|
负载均衡 测试技术 持续交付
高效后端开发实践:构建可扩展的微服务架构
在当今快速发展的互联网时代,后端开发扮演着至关重要的角色。本文将重点探讨如何构建可扩展的微服务架构,以及在后端开发中提高效率的一些实践方法。通过合理的架构设计和技术选型,我们可以更好地应对日益复杂的业务需求,实现高效可靠的后端系统。
|
25天前
|
监控 持续交付 API
构建高效可扩展的微服务架构
在当今快速迭代和竞争激烈的软件市场中,构建一个高效、可扩展且易于维护的后端系统变得尤为重要。微服务架构作为一种流行的分布式系统设计方式,允许开发者将应用程序划分为一系列小型、自治的服务,每个服务负责执行特定的业务功能。本文将探讨如何利用现代技术栈搭建一个符合这些要求的微服务架构,并讨论其潜在的挑战与解决方案。我们将涵盖服务划分策略、容器化、服务发现、API网关、持续集成/持续部署(CI/CD)以及监控和日志管理等关键主题,以帮助读者构建出既可靠又灵活的后端系统。
|
9天前
|
Kubernetes 安全 Java
构建高效微服务架构:从理论到实践
【4月更文挑战第9天】 在当今快速迭代与竞争激烈的软件市场中,微服务架构以其灵活性、可扩展性及容错性,成为众多企业转型的首选。本文将深入探讨如何从零开始构建一个高效的微服务系统,覆盖从概念理解、设计原则、技术选型到部署维护的各个阶段。通过实际案例分析与最佳实践分享,旨在为后端工程师提供一套全面的微服务构建指南,帮助读者在面对复杂系统设计时能够做出明智的决策,并提升系统的可靠性与维护效率。
|
20天前
|
存储 监控 Kubernetes
探索微服务架构下的系统监控策略
在当今软件开发领域,微服务架构因其灵活性、可扩展性和容错性而日益受到青睐。然而,这种架构的复杂性也为系统监控带来了新的挑战。本文旨在探讨在微服务环境下实现有效系统监控的策略,以及如何利用这些策略来确保系统的健壮性和性能。我们将从监控的关键指标入手,讨论分布式追踪的重要性,并分析不同的监控工具和技术如何协同工作以提供全面的系统视图。
|
20天前
|
监控 Java 开发者
构建高效微服务架构:后端开发的新范式
在数字化转型的浪潮中,微服务架构以其灵活性、可扩展性和容错性成为企业技术战略的关键组成部分。本文深入探讨了微服务的核心概念,包括其设计原则、技术栈选择以及与容器化和编排技术的融合。通过实际案例分析,展示了如何利用微服务架构提升系统性能,实现快速迭代部署,并通过服务的解耦来提高整体系统的可靠性。
|
25天前
|
消息中间件 敏捷开发 运维
构建高效可靠的微服务架构:策略与实践
随着现代软件开发的复杂性增加,微服务架构逐渐成为企业解决大型应用系统分解、敏捷开发和持续部署问题的有效手段。本文深入探讨了构建一个高效且可靠的微服务架构的关键策略,包括服务的合理划分、通信机制的选择、数据一致性保障以及容错处理。通过分析这些策略在具体案例中的应用,我们旨在为开发者提供一套可行的微服务设计及实施指南。
130 6
|
25天前
|
监控 数据管理 API
构建高效微服务架构:后端开发的新趋势
在现代软件开发领域,随着业务需求的不断复杂化以及敏捷迭代的加速,传统的单体应用架构逐渐暴露出其局限性。微服务架构作为一种新的解决方案,以其高度模块化、独立部署和可扩展性,正成为后端开发领域的新趋势。本文将探讨微服务架构的核心概念,分析其优势与面临的挑战,并提供实施高效微服务的策略和最佳实践,帮助读者理解如何利用这一架构模式提升系统的可靠性、灵活性和可维护性。
135 5
|
2天前
|
负载均衡 Java 开发者
细解微服务架构实践:如何使用Spring Cloud进行Java微服务治理
【4月更文挑战第17天】Spring Cloud是Java微服务治理的首选框架,整合了Eureka(服务发现)、Ribbon(客户端负载均衡)、Hystrix(熔断器)、Zuul(API网关)和Config Server(配置中心)。通过Eureka实现服务注册与发现,Ribbon提供负载均衡,Hystrix实现熔断保护,Zuul作为API网关,Config Server集中管理配置。理解并运用Spring Cloud进行微服务治理是现代Java开发者的关键技能。